Lecture 5: Antifungal Drugs, Part II

Flucytosine
◆ One of the oldest antifungal agents, also known as 5-fluorocytosine, 5-flucytosine, and 5-FC
◆ Its use in conjunction with AmB to treat cryptococcosis marked the beginning of combination antifungal therapy to treat variously well-defined mycoses
◆ Additional clinical indications
 ∗ Candidiasis
 ∗ Chromoblastomycosis (+/- AmB)
◆ Innately resistant/non-responsive fungi
 ∗ Candida krusei
 ∗ Scedosporium apiospermum (P. boydii)
 ∗ Dimorphs - *Histoplasma capsulatum*, *Coccidioides immitis*, *Blastomyces dermatitidis*, *Sporothrix schenckii*
◆ Mechanism of action: 5-FC taken up by a fungal-specific cytosine permease and converted to 5-fluorouracil (5-FU), which leads to two important consequences:
 ∗ Inhibition of protein synthesis - 5-FU incorporated into mRNA
 ∗ Inhibition of DNA synthesis - 5-FU converted to 5-fluorodeoxyuridine which inhibits thymidylate synthetase
◆ Resistance to 5-FC might arise from mutations in key enzymes of these pathways as well as cytosine permease
◆ Adverse affects
 ∗ Gastrointestinal complaints (most common) - likely from microflora metabolism of 5-FC
 ∗ Bone marrow damage/toxicity (dosage dependent)
 ∗ Hepatic toxicity

Azole Antifungals
◆ 1979 - first azole drug marketed: miconazole
 ∗ Toxic, but effective
 ∗ No longer commercially available
◆ First generation azole antifungals
 ∗ Ketoconazole (1981)
 ∗ Fluconazole (1990)
 ∗ Itraconazole (1992)
◆ First generation azoles
 * Excellent against *Candida* and endemic fungi (e.g., *Histoplasma*, *Coccidioides*, etc.)
 * Ineffective against most mold pathogens

◆ Second generationazole antifungals
 * Voriconazole (2002)
 * Posaconazole (not yet licensed)
 * Raviconazole (not yet licensed)

◆ Mechanism of action:
 * Inhibition of fungal cytochrome P-450 enzyme involved in ergosterol biosynthesis
 * Net result: disruption of normal structure and function of cell membrane

◆ Azoles are generally considered fungistatic agents, though in some special circumstances they are fungicidal

◆ Pharmacokinetics
 * Generally well absorbed
 * Peak serum concentrations are observed 2-3 hours after administration
 * Distributed quite well to all body tissues, including relatively high concentrations in central spinal fluids
 * Most azoles, except fluconazole, undergo hepatic metabolism by cytochrome P-450 and are eliminated as inactive metabolites

◆ Spectrum of activity
 * Dimorphic fungi: generally effective
 * Fluconazole exhibits
 * Relatively poor activity against molds
 * Moderate activity against dimorphic pathogens
 * No activity against *Candida krusei* and many strains of *Candida glabrata*
 * Fungi resistant to first generation azoles tend to be more susceptible to second generation azoles
In vitro resistance
 * Two types:
 - Primary (intrinsic) - natural resistance of fungus without previous exposure to drug
 - Secondary (acquired) - development of resistance due to exposure to the drug
 * Primary resistance
 - Generally predictable, e.g., Candida krusei
 - Problematic is the selection of intrinsically resistant strains during treatment for another fungal infection
 * Secondary resistance
 - Uncommon except in immunocompromised patients, generally those infected with HIV, receiving prolonged therapy
 - Several mechanisms of secondary resistance:
 - Alteration or over expression of cytochrome P-450
 - Exclusion of the drug from the cell via efflux pump (considered the most common mechanism)
 - Prevention of accumulation of toxic sterol intermediates

Adverse effects
 * Gastrointestinal complaints
 * Hepatic dysfunctions
 * Cutaneous symptoms
 * Endocrine disturbances
 * Drug-specific effects, e.g., blurred vision with voriconazole

Terbinafine
 * Terbinafine is a relatively new antifungal agent for oral and topical applications
 * Categorized as an allylamine
 * Generally used to treat superficial infections, particularly dermatophytes
 * Great interest in development of this drug to treat systemic fungal infections
 * Mechanism of action:
 - Inhibits squalene epoxidase, an enzyme involved in ergosterol biosynthesis
 - Accumulation of squalene disrupts the function of the cell membrane
 - Squalene is also toxic to fungi
 - Distinct from azoles in that it has a distinct preference for fungal cytochrome P-450 enzymes and not human versions
◆ Extremely broad spectrum of antifungal activity including
 ✢ Onychomycosis (nail infections)
 ✢ Tinea captitis (ringworm of the scalp)
 ✢ Dermatophyte infections
 ✢ Sporotrichosis
 ✢ Chromoblastomycosis
 ✢ Mycetoma