Lecture 2: Laboratory Aspects of Medical Mycology

General Classification Scheme

- Fungal reproductive structures are the basis for the classification and naming of fungi
- Four general groups
 - Chytridiomycota - motile zoospores
 - Zygomycota - thick-walled zygospore
 - Ascomycota - endogenous meiospores
 - Basidiomycota - exogenous meiospores
- Sexually reproductive form of a fungus is termed a teleomorph
- Not all fungi reproduce sexually or infrequently mate
 - Classified within an artificial taxon termed Deuteromycota or Fungi Imperfecti
 - Reproduction is by asexual means via mitotically-derived spores (conidia)
 - Asexual form is termed an anamorph
- Anamorphic fungi are placed into artificial classes primarily based upon their morphology
 - Hyphomycetes - septate hyphae on which conidia are directly produced or are borne on specialized hyphal branches
 - Coelomycetes - septate hyphae, but conidia are formed within spherical, flask-shaped, or spherical structures
 - Blastomycetes - yeasts and pseudohyphae

Fungal Disease Nomenclature

- The International Botanical Code of Nomenclature governs how fungi are given scientific names
- Fungi can be renamed for two reasons
 - Reclassification in the light of new information
 - Discovery of the teleomorph of a previously anamorphic stage
- Fungal disease names are not subject to rules like the Botanical Code
- Past practice was to name disease after the generic name of the causative organism, e.g.,
 - Aspergillosis for *Aspergillus* infections
 - Candidiasis for *Candida* infection
◆ However, when the name of a fungus changes, so does the name of the disease, e.g., previous names of the disease pseudallescheriasis
 ＊ Pseudallescheriasis (*Pseudallescheria*)
 ＊ Monosporiosis (*Monosporium*)
 ＊ Petriellidiosis (*Petriella*)
 ＊ Allescheriasis (*Allescheria*)
 ＊ Scedosporiosis (*Scedosporium*)
◆ Current practice based upon a 1992 recommendation - where possible, name an individual disease in the form of “pathology A due to fungus B”, e.g.,
 ＊ chromoblastomycosis due to *Fonseca pedrosoi*
 ＊ chromoblastomycosis due to *Phialophora verrucosa*
◆ Some commonly used disease names have been retained, but when the specific etiologic is given when known, e.g., aspergillosis due to *Aspergillus fumigatus*

Laboratory Procedures
◆ Because the clinical presentation of many fungal infections is non-specific and representative of a number of etiological agents, a definitive diagnosis is based upon laboratory results
◆ Success in laboratory diagnosis is dependent upon appropriate collection of specimens and their handling
◆ Three basic approaches for diagnosing the cause of a fungal infection
 ＊ Direct microscopic detection of etiologic agent in the specimen
 ＊ Isolation and identification of the pathogen in culture
 ＊ Serological evidence
◆ Newer methods are being developed
◆ Direct microscopic examination
 ＊ Observation of fungal material
 ＊ Can be used with histopathological stains
 ＊ Can be, and should be, correlated with results of fungal culture
 ＊ Disadvantages
 ● Less sensitive than culture
 ● Possibility of false-positive and false-negative results
Histopathology

- A reliable method to diagnosis fungal infections by observation of
 - Specific types of fungal structures in tissue
 - Visualization of cells using stains to mark cells not normally present in tissue
- Dependent upon
 - Tissue quality
 - Abundance of organism
 - Presence of distinctive structures

Culture

- Most fungi grow well on common mycological media
- Growth can be slow and development of diagnostic structures (e.g., spores) can be poor
- Culture techniques (e.g., specific media, incubation temperature, etc.) can be tailored to the fungus based upon suspected diagnosis
- Commonly used media include:
 - Sabouraud’s dextrose (glucose) - supports the growth of most fungi
 - Brain heart infusion - for fastidious fungi like *Histoplasma capsulatum*
 - CHROMagar - chromogenic medium used to distinguish between different *Candida* species
- Other considerations for fungal cultures:
 - Inclusion of antibiotics in media
 - Temperature of incubation
 - Duration of incubation
- Growth of a fungus in culture does not always establish its role in disease
 - Isolation of *Histoplasma* usually is a good indicator that it is the agent of disease since it is not typically found in healthy individuals
 - Isolation of *Aspergillus* or *Candida* is more suspect in the absence of clinical symptoms since these fungi are commonly found in the environment and as normal flora
 - One key to consider - is the specimen from a normally sterile site?
Disadvantages of culture

- Failure to recover an organism (negative culture) does not rule out a diagnosis, particular if symptoms are supportive of a particular diagnosis
- Time needed for culture can be excessive in terms of treatment-dependent diagnosis
- Mixed cultures can present a problem in discerning which fungus is the true etiological agent
- Common fungi can be inadvertently dismissed as contaminants

Fungal identification

- Classically, based upon macroscopic and microscopic observation of morphological characteristics
- Yeasts tend to be less morphologically distinct, therefore many identifications based upon biochemical characteristics much like enteric bacteria
- Other methods of identification:
 - DNA probes
 - Rapid tests such as
 - Germ tube test for Candida
 - Urease test for Cryptococcus
 - Chromogenic assays
 - Molecular methods
 - ITS sequences
 - PCR amplification of diagnostic DNA sequences

Serological testing

- Two types
 - Antibody detection
 - Antigen detection
- Except for specific situations, results are seldom absolute and must be considered with regard to other supportive information
- Antibody testing in immunocompromised individuals is problematic

Antifungal drug susceptibility testing

- In vitro testing can assess if an isolate is susceptible to a particular antifungal drug
 - MIC (minimum inhibitory concentration) levels
 - MFC (minimum fungicidal concentration) levels
- Assumption that testing can predict clinical outcome is not necessarily correct
Studies are ongoing to assess the correlation of MIC/MFC data with treatment outcomes in infections involving yeasts

Factors to be considered in relating MIC data to treatment outcome

- MIC data are not a physical measurement
- Hard to measure host factors affect clinical outcome
- Susceptibility does not uniformly predict success in vivo
- In vitro resistance to antifungal drugs does not always correlate with treatment failure

Types of methods

- Macrodilution tube series
- Microdilution microtiter plate series
- Agar-based techniques
 - Disk diffusion
 - Etest

Routine testing of mold isolates is not recommended due to time/costs involved and absence of definitive interpretation of results with regard to treatment outcome