Fungal Spores, Dormancy, and Dispersal

What are Fungal Spores?
- General definition: microscopic propagules that lack an embryo and are specialized for dispersal or dormant survival
 - Sexual spores tend to serve for dispersal
 - Asexual spores tend to serve for dormant survival
 - Some spores serve both purposes

What are Fungal Spores? (cont.)
- Spores differ from somatic cells:
 - Wall is thicker, often with pigments
 - Dense cytoplasm, poorly developed cytoplasmic components
 - Low water content, respiration rates, and protein/nucleic acid synthesis
 - High content of energy-storage molecules, e.g., glycogen, lipids, etc.

Spore Dormancy/Germination
- Dormancy is a general characteristic of most spores
- Two groups of spores based upon ability to germinate:
 - Constitutive dormancy
 - No germination in 'normal' conditions that stimulate somatic growth/development
 - Need to age or be activated by a specific trigger, e.g., heat shock
 - Exogenously imposed dormancy – remain dormant in unsuitable conditions, but germinate in response to nutrients

Spore Dormancy/Germination (cont.)
- Germination process
 - Hydration
 - Increase respiration
 - Increased synthesis
 - Outgrowth

Spore Dormancy/Germination (cont.)
- Constitutive dormancy
 - Mechanisms of release
 - Maturation process; or
 - Triggering event that activates trehalase; or
 - Removal of endogenous inhibitors
 - Ecological aspects – germination of
 - Coprophilous fungi triggered by digestive tracts of animals
 - Pyrophilous fungi triggered by fire/heat
Spore Dormancy/Germination (cont.)

- Exogenously imposed dormancy
 - Mechanism – fungistasis due to microbial activity in soil
 - Nutrient competition (probably key cause)
 - Release of microbial metabolites
 - Ethylene
 - Allyl alcohol
 - Ammonia
 - Both actions, but not antibiotics

Ecological implications of fungistasis

- Plant pathogens wait until exudates (nutrients) become available; crop rotation can inhibit pathogenesis [germination lysis]
- Release of host-specific molecules that stimulate germination [breed plants that don’t release these molecules]

Spore Dispersal

- Ballistic dispersal – coprophilous fungi
 - Phototrophic
 - Explosive discharge
 - Large projectile
- Insect dispersal (e.g., bark beetles and Dutch elm disease due to *Ophiostoma ulmi* and *O. novo-ulmi*)

Spore Dispersal (cont.)

- Appendages of aquatic fungi
- Motility of zoospores
- Airborne spores
- Rain drops