- * Mycelial fungi are typically multinucleate (many nuclei in a common cytoplasm) and reap both the benefits of being haploid and a "functional diploid"
- * Not so for solely diploid organisms (e.g., Oomycota) and it also different for organisms like S. cerevisiae which can have either a persistent haploid or diploid state
- ◆ Nonsexual variation: heterokaryosis
 - Heterokaryons have two or more genetically different nuclei in a common cytoplasm (as opposed to homokaryons)
 - * Heterokaryons produced in two ways:
 - Mutation of a wild-type nucleus
 - Fusion of two genetically different strains
 - * Ratio of genetically different nuclei can vary depending upon selection pressures, e.g., Jinks test involving *Penicillium cyclopium* (see Table 9.3 in Deacon)
 - * Heterokaryons do break down or segregate into homokaryons by one of two mechanisms
 - Uninucleate spore production
 - Branch contains a single nuclear type
- ◆ Nonsexual variation: parasexuality
 - * Discovered by Pontecorvo in studying heterokaryosis
 - * He observed that a heterokaryon having nuclear condition Ab and aB, produced not only parental types (Ab and aB), but also recombinant types, AB and ab.
 - * Further study of this phenomenon led Pontecorvo to propose a parasexual cycle consisting of three stages:
 - Diploidization
 - Mitotic chiasma formation
 - Haploidization
 - * Parasexuality in relatively rare and is not a regular cycle as is sexual reproduction
- ◆ Sexual variation
 - * Major mechanism for producing recombinants
 - * Different mechanisms of crossing have evolved due to environmental conditions
 - Heterothallic
 - Homothallic
 - Others
 - * Sexual spores tend to be dormant

- Plasmids and transposable elements
 - * Transposons
 - Short regions of DNA that remain in the chromosome, but encode for enzymes that function in the replication of these transposable elements
 - + Produce RNA copies of themselves
 - Encode reverse transcriptase as well
 - RNA is copied into DNA that then inserts itself into various points of a chromosome
 - Rare in filamentous fungi
 - Several types in *S. cerevisiae*, including the Ty element (about 30 copies per cell), that can alter gene expression and chromosomal arrangements
 - No known function, except for self-replication

◆ Viruses

- * First discovered as a pathogen of mushrooms
- * Electron microscopy revealed isometric virus-like particles (VLPs)
- * Now found in numerous fungal species
- * With few exceptions, however, VLPs appear not to cause any symptoms
- * Common characteristics of fungal VLPs
 - Genome of dsRNA
 - Capsid composed of one polypeptide
 - Genome encodes for a single protein, dsRNA-dependent RNA polymerase
 - Variable genome size
 - Occur as crystalline arrays often near the ER
 - Transmission is by hyphal fusion or via passage into asexual spores
- * VLPs are resident genetic elements, i.e., without a natural means of spreading, they don't cross species barriers
- * Can affect virulence of certain species

Genetic Variation

- ◆ Nonsexual variation: the significance of haploidy
 - Haploid fungi are under constant selection pressure, thereby increasing fitness or causing a loss thereof
 - Benefit: short term acquisition of characteristics
 - Disadvantage: cannot withstand long-term accumulation of mutations not of immediate value

- Chromosomes in fungi
 - * Most are haploid
 - * Difficult to quantify
 - Very condensed
 - Nuclear membrane persists
 - * Number of chromosomes vary between 3 and 40 with most fungi having between 6 and 16
 - * Genome size is small compared to other eukaryotes
 - 3-8 times larger than E. coli, but 5-30 smaller than fruit flies or humans
 - Reason: limited multicopy DNA, restricted mainly to rRNA and tRNA
- Mitochondrial genes
 - Fungal mitochondrial genomes are small (19-121 kb in size) compared to plants (1 Mb), but larger than humans (6.6 kb)
 - * Differences due to non-coding segments
 - * Both nuclear and mitochrondrial genes are essential for function of this organelle
 - * Have an important role in senescence (aging)
- Plasmids and transposable elements
 - * Plasmids are self replicating
 - Usually circular
 - Also, linear capped forms
 - * Most common types
 - "2 micron" plasmid found in the nucleus of Saccharomyces cerevisiae
 - Many other plasmids found within mitochondria
 - No known function of any

Biology of Fungi, Lecture 9: Fungal Genetics, Molecular Genetics, and Genomics

Concepts

- ◆ Fungi have major tools for classical genetic studies
 - * Ease of growth
 - * Short life cycles
 - * Most are haploid
 - * Many have a sexual stage
 - * Produce asexual spores that can be used or stored in bulk
- ◆ Fungi also serve as good models for biochemical studies
 - * Simple nutrient requirements
 - * Can be directly correlated with genetic studies, e.g., "one gene, one enzyme" hypothesis by Beadle and Tatum

Neurospora Classical Genetics

- Neurospora has 4-5 heterothallic species
 - * Two mating types: A and a
 - * "male spore" fertilizes a female trichogyne to eventually form asci bearing ascospores
 - * Haploid nuclei fuse to form a diploid nucleus, which then undergoes meiosis followed by a second mitotic division
- ◆ Resulting 8 nuclei are arranged in a linear fashion within an ascus
- Patterns of sister chromatid segregation of can be deduced from the different types of arrangements
 - * Cross-over events
 - * Gene mapping

Genome Structure

- ◆ A genome is all the genetic information possessed by an organism
 - * Chromosomal genes
 - * Mitochondrial genes
 - * Plasmids/mobile genetic elements
 - * Virus genes
- ◆ Each contributes to the overall phenotype of the fungus