Table 7.1. Some secondary metabolites derived from different pathways and precursors [after Deacon, 2006]

<table>
<thead>
<tr>
<th>Precursor</th>
<th>Pathway</th>
<th>Metabolites; representative organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugars</td>
<td></td>
<td>Few, e.g. muscarine (Amanita muscaria) kojic acid (Aspergillus spp.)</td>
</tr>
<tr>
<td>Aromatic amino acids</td>
<td>Shikimic acid</td>
<td>Some lichen acids</td>
</tr>
<tr>
<td>Aliphatic amino acids</td>
<td>Various, including peptide synthesis</td>
<td>Penicillins (P. chrysogenum, P. notatum) Fusaric acid (Fusarium spp.) Ergot alkaloids (Claviceps, Neotyphodium) Lysergic acid (Claviceps purpurea) Sporidesmin (Pithomyces chartarum) Beauvericin (Beauveria bassiana) Destruxins (Metarhizium anisopliae)</td>
</tr>
<tr>
<td>Organic acids</td>
<td>TCA cycle</td>
<td>Rubratoxin (Penicillium rubrum) Itaconic acid (Aspergillus spp.)</td>
</tr>
<tr>
<td>Fatty acids</td>
<td>Lipid metabolism</td>
<td>Polyacetylenes (Basidiomycota fruitbodies and hyphae)</td>
</tr>
<tr>
<td>Acetyl-CoA</td>
<td>Polyketide</td>
<td>Patulin (Penicillium patulum) Usnic acid (many lichens) Ochratoxins (Aspergillus ochraceus) Griseofulvin (Penicillium griseofulvum) Aflatoxins (A. parasiticus, A. flavus)</td>
</tr>
<tr>
<td>Acetyl Co-A</td>
<td>Isoprenoid</td>
<td>Trichotheccenes (Fusarium spp.) Fusicoccin (Fusicoccum amygdali) Several sex hormones: sirenin, trisporic acids, oogoniol, antheridiol Cephalosporins (Cephalosporium and related fungi) Viridin (Trichoderma virens)</td>
</tr>
</tbody>
</table>
Examples of secondary metabolites:
- Penicillin, griseofulvin, other antibiotics
- Pigments such as melanin and carotenoid
- Plant hormones like gibberellins
- Pharmaceuticals like ciclosporin A
- Aflatoxins
- Ergot alkaloids

Why secondary metabolism, especially since they hold no apparent selective advantage (i.e., genes should be lost)?
- Necessary as escape valve for intermediates of primary metabolic pathways when growth is restricted
- Provide a selective advantage that is yet to be made obvious

Key intermediate pathways and precursors include those shown in Table 7.1 of Deacon
Anaplerotic reactions include:
* Production of oxaloacetate from pyruvate by the addition of carbon dioxide
* Glyoxylate pathway - a type of short-circuited TCA pathway
 * Isocitrate is converted to glyoxylate, which is then converted to malate, which then forms oxaloacetate.
 * Oxaloacetate is used to form PEP/sugars

Lysine Biosynthesis
* Lysine is an essential amino acid that is not naturally produced by human and many animals
* Two pathways found in microbes and plants for producing lysine
 * DAP - \(-\)diaminopimelic acid precursor
 * AAA - \(-\)aminoadipic acid precursor
* DAP pathway is used by plants, bacteria, and the Oomycota
* AAA pathway is used by chitin-containing fungi and some euglenids
* Divergence of these pathways is evolutionarily significant

Secondary Metabolism
* Secondary metabolism refers to a diverse range of metabolic reactions not directly or obviously involved in normal cellular growth
* Thousands of secondary metabolites have been described by fungi
* Common features of secondary metabolites from fungi include:
 * Tend to be produced at the end of exponential growth or during substrate-limited conditions
 * Produced from common metabolic intermediates, but use specialized pathways encoded by specific genes
 * Not essential for growth or normal metabolism
 * Production tends to be genus-, species-, or strain-specific
* Collectively, these commonalities tend to argue for tight regulatory control of secondary metabolism
Biology of Fungi, Lecture 8: Fungal Metabolism and Fungal Products

Energy Acquisition

- Fungi use glycolysis and the tricarboxylic acid (TCA) pathways to
 * Generate energy
 * Provide biosynthetic precursors

- Glycolysis
 * Glucose is converted to pyruvic acid
 * Pyruvic acid is a key intermediate

- Fate of pyruvic acid
 * Oxygen present - transported to the mitochondrion, converted to acetyl-coenzyme A which is then processed through the TCA cycle
 * Oxygen absent/limiting - undergoes fermentation to produce
 - Ethanol (via acetylaldehyde)
 - Lactic acid

- Energy yield
 * Aerobic respiration - 38 potential ATPs produced per glucose molecule; actual yield is lower
 - Use of intermediates for other reactions
 - Use of NADP/NADPH for redox reactions
 * Fermentation - 2 ATP molecules

- Use of alternative terminal electron acceptors
 * Some fungi use nitrate instead of oxygen as terminal electron acceptor
 - Yields potentially 26 ATPs per glucose
 - Lower due to differences in ATP generation in the electron transport chain
 * Considered anaerobic respiration (as opposed to aerobic respiration when oxygen is used)

Balancing the Pathways

- Intermediates of glycolysis and the TCA pathway are used to make other substances
- How does the cell replace these components to maintain energy production?

 Answer: Anaplerotic reactions