Table 7.1. Some secondary metabolites derived from different pathways and precursors [after Deacon, 2006]

Precursor	Pathway	Metabolites; representative organisms
Sugars		Few, e.g. muscarine (<i>Amanita muscaria</i>) kojic acid (<i>Aspergillu</i> s spp.)
Aromatic amino acids	Shikimic acid	Some lichen acids
Aliphatic amino acids	Various, including peptide synthesis	Penicillins (<i>P. chrysogenum, P. notatum</i>) Fusaric acid (<i>Fusarium</i> spp.) Ergot alkaloids (<i>Claviceps, Neotyphodium</i>) Lysergic acid (<i>Claviceps purpurea</i>) Sporidesmin (<i>Pithomyces chartarum</i>) Beauvericin (<i>Beauveria bassiana</i>) Destruxins (<i>Metarhizium anisopliae</i>)
Organic acids	TCA cycle	Rubratoxin (<i>Penicillium rubrum</i>) Itaconic acid (<i>Aspergillu</i> s spp.)
Fatty acids	Lipid metabolism	Polyacetylenes (Basidiomycota fruitbodies and hyphae)
Acetyl-CoA	Polyketide	Patulin (<i>Penicillium patulum</i>) Usnic acid (many lichens) Ochratoxins (<i>Aspergillus ochraceus</i>) Griseofulvin (<i>Penicillium griseofulvum</i>) Aflatoxins (<i>A. parasiticus</i> , <i>A. flavus</i>)
Acetyl Co-A	Isoprenoid	Trichothecenes (Fusarium spp.) Fusicoccin (Fusicoccum amygdali) Several sex hormones: sirenin, trisporic acids, oogoniol, antheridiol Cephalosporins (Cephalosporium and related fungi) Viridin (Trichoderma virens)

- ◆ Examples of secondary metabolites:
 - * Penicillin, griseofulvin, other antibiotics
 - * Pigments such as melanin and carotenoid
 - * Plant hormones like gibberellins
 - * Pharmaceuticals like ciclosporin A
 - * Aflatoxins
 - * Ergot alkaloids
- ◆ Why secondary metabolism, especially since they hold no apparent selective advantage (i.e., genes should be lost)?
 - * Necessary as escape valve for intermediates of primary metabolic pathways when growth is restricted
 - * Provide a selective advantage that is yet to be made obvious
- ◆ Key intermediate pathways and precursors include those shown in Table 7.1 of Deacon

- Anaplerotic reactions include:
 - * Production of oxaloacetate from pyruvate by the addition of carbon dioxide
 - * Glyoxylate pathway a type of short-circuited TCA pathway
 - Isocitrate is converted to glyoxylate, which is then converted to malate, which then forms oxaloacetate.
 - Oxaloacetate is used to form PEP/sugars

Lysine Biosynthesis

- ◆ Lysine is an essential amino acid that is not naturally produced by human and many animals
- ◆ Two pathways found in microbes and plants for producing lysine
 - * DAP []-diaminopimleic acid precursor
 - * AAA []-aminoadipic acid precursor
- ◆ DAP pathway is used by plants, bacteria, and the Oomycota
- ◆ AAA pathway is used by chitin-containing fungi and some euglenids
- ◆ Divergence of these pathways is evolutionarily signficant

Secondary Metabolism

- Secondary metabolism refers to a diverse range of metabolic reactions not directly or obviously involved in normal cellular growth
- ◆ Thousands of secondary metabolites have been described by fungi
- ◆ Common features of secondary metabolites from fungi include:
 - * Tend to be produced at the end of exponential growth or during substrate-limited conditions
 - * Produced from common metabolic intermediates, but use specialized pathways encoded by specific genes
 - * Not essential for growth or normal metabolism
 - * Production tends to be genus-, species-, or strain-specific
- ◆ Collectively, these commonalities tend to argue for tight regulatory control of secondary metabolism

Biology of Fungi, Lecture 8: Fungal Metabolism and Fungal Products

Energy Acquisition

- ◆ Fungi use glycolysis and the tricarboxylic acid (TCA) pathways to
 - * Generate energy
 - * Provide biosynthetic precursors
- ◆ Glycolysis
 - * Glucose is converted to pyruvic acid
 - * Pyruvic acid is a key intermediate
- ◆ Fate of pyruvic acid
 - * Oxygen present transported to the mitochondrion, converted to acetyl-coenzyme A which is then processed through the TCA cycle
 - * Oxygen absent/limiting undergoes fermentation to produce
 - Ethanol (via acetylaldehyde)
 - Lactic acid
- ◆ Energy yield
 - * Aerobic respiration 38 potential ATPs produced per glucose molecule; actual yield is lower
 - Use of intermediates for other reactions
 - Use of NADP/NADPH for re-dox reactions
 - * Fermentation 2 ATP molecules
- Use of alternative terminal electron acceptors
 - * Some fungi use nitrate instead of oxygen as terminal electron acceptor
 - Yields potentially 26 ATPs per glucose
 - Lower due to differences in ATP generation in the electron transport chain
 - * Considered anaerobic respiration (as opposed to aerobic respiration when oxygen is used)

Balancing the Pathways

- ◆ Intermediates of glycolysis and the TCA pathway are used to make other substances
- ◆ How does the cell replace these components to maintain energy production?

Answer: **Anaplerotic reactions**