- Chytrids in cattle rumen
 - + Have a major role in degrading plant structural carbohydrates
 - → Process these compounds through a mixed acid fermentation pathway, much like lactic acid bacteria
 - Mixed acid fermentation occurs in the cytoplasm producing ethanol and lactic acid (derived from pyruvate)
 - Some pyruvate goes to the hydrogenosome where ATP is produced as well as molecular hydrogen
 - + Hydrogen is converted to methane
- Physiology of oxygen tolerance
 - * Inadvertant side product of metabolism are several types of highly reactive forms of oxygen
 - O₂, superoxide anaion
 - H₂O₂, hydrogen peroxide
 - OH⁻, hydroxyl radical
 - * These oxygen species damage cellular constituents
- Fungi and other organisms have evolved mechanisms to handle these destructive compounds
 - * Catalase converts H₂O₂ to water and molecular oxygen
 - * Superoxide dismutase converts O₂ to water and molecular oxygen

- * Do thermophilic fungi have a higher rate of metabolism as compared to mesophiles?
 - No difference in growth rate
 - Suggests that thermophiles have become specifically adapted to their hightemperature environment

Hydrogen Ion Affects

- ◆ Fungi grow over a broad range of pH
 - * Range = 4.0 8.5
 - * Some grow over broader range of 3.0 9.0
 - * Most show a relatively broad pH range optimum of 5.0 7.0
- Also, special cases of acid-tolerant and acidophilic fungi as well as alkali-tolerant and alkalophilic fungi
- ◆ Fungi from extreme pH environments still possess cytosolic pH near 7.0
- Fungal cytosol has a great buffering capacity that functions by either
 - * Pumping H⁺ ions out;
 - * Exchange of materials between cytoplasm and vacuoles; or
 - * Interconversion of sugars and polyols
- ◆ Changes in the cytoplasmic pH can induce differentiation, e.g., zoospore induction in Phytophthora
- ◆ Fungi can alter their environmental pH which can help facilitate the acquisition of nutrients
- Small pH gradients can help direct fungal growth

Oxygen and Growth

- ◆ With respect to oxygen requirements, fungi can be either:
 - * Obligate aerobes;
 - * Facultative aerobes;
 - Fermentation absence of oxygen
 - Anaerobic respiration terminal electron acceptor other than oxygen
 - * Obligately fermentative; or
 - Lack mitochondria or cytochromes
 - Growth occurs via fermentation regardless of the presence or absence of oxygen
 - * Obligate anaerobes cannot grow/survive in the presence of oxygen
 - Major group Chytridiomycota
 - Live in a consortium of microbes within the rumen of cattle

Biology of Fungi, Lecture 7: Environmental Conditions for Growth and Tolerance

Concepts

- ◆ Fungal cultures in the laboratory does not always predict what happens to fungi growing in nature
- ◆ Fungi often can tolerate one suboptimal condition provided all others are at or near optimum
- ◆ Competition in nature can restrict what is observed to occur in the laboratory

Temperature

- ◆ Fungi can be categorized with regard to their response to temperature
- ◆ Four basic groups
 - * Thermophilic: 20°C min., ~50°C max., 40-50°C optimum
 - * Thermotolerant: can grow well within a wide range of temperatures
 - * Mesophilic: commonly grow from 10-40°C; includes most fungi
 - * Psychrophilic: growth optimum ≤16°C; 20°C max., ≤4°C minimum
- ◆ Physiological bases of temperature tolerance
 - * Eukaryotic structural complexity alone restricts growth maximum to 60-65°C
 - * Lower limits restricted by
 - Reduced rates of chemical reactions
 - Increased viscosity of cellular water
 - Concentration of substances, e.g., ions
 - * Homeoviscous adaptation changes in the fatty acid composition of the cell membrane due to temperature fluctuations
 - Ensures membrane fluidity
 - Unsaturated fatty acids increase with lower temperatures, e.g., psycrophilic fungi contain more unsaturated fatty acids in their membranes than mesophiles
 - * Cytoplasmic composition changes to temperature fluctuations
 - Increases in polyols as temperature decreases
 - Trehalose increases as temperatures become lower providing membrane protection
 - * Responses of fungi to increased temperatures
 - Enzymes and ribosomes of thermophiles are more heat stable
 - Heat-shock proteins act like chaperones