Biology of Fungi, Lecture 5: Fungal Development and Differentiation

Mold-Yeast Dimorphism

- Some fungi have the ability to alternate between a mold form and a that of a yeast form dimorphic fungi
- ◆ Several pathogens of humans exhibit dimorphism
 - * Candida albicans
 - * Histoplasma capsulatum
- ◆ Dimorphism occurs in response to environmental factors, of which no one common factor regulates the morphological switch in all dimorphic fungi [Table 5.1, Deacon]
 - * e.g., Histoplasma capsulatum mold at 25°C, yeast at 37°C
 - * e.g., Mucor rouxii mold with oxygen, yeast in the absence of oxygen
- What is clear is that there is a change in polarity in terms of growth, thereby making study of the cell cycle a significant focal point
- ◆ To help identify the control of dimorphic growth, the mold and yeast phases of a fungus are compared typically differences in biochemistry, physiology, and gene expression are noted
- ◆ Two fundamental questions on the observed differences:
 - * Are the differences the cause of dimorphism?
 - * Did the dimorphic switch cause the differences?
- Examples of differences:
 - * Cell wall composition
 - * Cellular signaling and regulatory factors
 - Calcium, calcium-binding proteins, cAMP, pH, and protein phosphorylation have all been shown to fluctuate depending upon the growth form of a dimorphic fungus
 - Not clear is some or all or any directly impact the changes in cell morphology
 - * Gene expression differences
 - Measurement of mRNA production
 - Again, no clear cut answer as to an obligatory role of a gene in dimorphism
 - * Possible unifying theme the Vesicle Supply Center (VSC; Spitzenkörper)
 - Using computer generated models, Bartnicki-Garcia has postulated that the VSC is the key element in morphogenesis
 - The VSC 'bombards' the cell membrane with vesicles to direct wall biosynthesis
 - The VSC can change direction or even split to generate growth in two different directions simultaneously

Infection Structures

- Plant pathogens (and by analogy, insect pathogens) infect a host using a specialized prepenetration structure
 - * Swelling of germ tube tip appressorium
 - * Short lateral swelling of hyphal branch hyphopodium
 - * Several points of attack from a complex structure termed an infection cushion
- ◆ All of these structures serve as an anchor for release of enzymes (e.g., cutinase) followed by full penetration by an infection peg
- Penetration pegs push into material via turgor pressure formed by the conversion of stored glycogen into osmotically active compounds
- ◆ The appressoria produce an adhesive compound attachment and their cell walls contain melanin
 - * Melanin helps appressoria resist deformation due to turgor pressure, re-directing the pressure to the infection peg
 - * Melanin helps appressoria survive on surface by helping the fungus resist dessication and the effects of UV light
- ◆ Triggering mechanism for differentiation of infection structures relies on two types of contact-sensing:
 - * Nontopographical response is merely to the presence of a hard surface leading to localized secretion of adhesives and wall-degrading enzymes
 - * Topographical -
 - * Topographical more specific response to ridges or grooves of particular heights/depths on the host surface
 - Hyphae grow randomly on surface until a groove is found
 - Growth then occurs vertically to this groove
 - When hyphae sense a stomatal ridge, they form an appressorium and begin to penetrate the surface via the stomatal opening
 - Involves stretch-activated ion channels leading to the influx of ions into the fungal cell
- ◆ Once penetration occurs, the fungus forms a huastorium within the tissue that absorbs nutrients from the host

Other Specialized Structures

- ◆ Sclerotia
 - * Hyphal bodies involved in survival by dormancy
 - * Structurally consist of repeated, localized hyphal branching that anastomose

- * Germinate to form either
 - Hyphae (myceliogenic)
 - Sexual fruiting body (carpogenic)
- * Triggering mechanisms:
 - Formation nutrient depletion
 - Germination nutrient favorable conditions
- ◆ Nutrient-translocating organs formed due to lack of nutrients
 - * Mycelial cords consolidated hyphae with non-specific structure
 - * Rhizomorphs more defined structure than mycelial cord

Asexual Reproduction

- Two fundamentally different processes lead to the development of two distinct types of mitospores:
 - * Sporangiospores
 - * Conidia (conidiospores)
- Sporangiospores
 - * Formed by the cleavage of protoplasm within a multinucleate sporangium
 - * Several mechanisms
 - Large number of cleavage vesicles migrate around nuclei, then fuse to form the membrane of the spores
 - Central vacuole forms "arms" that fuse with the membrane of the sporangium to delimit the individual spores
 - * Flagellar apparatus in motile spores (e.g., *Phytophthora*)
 - Separate flagellar vesicle is separate, but fuses with the spore membrane after enclosing the nucleus presenting itself on the outside
 - Significant process in that there appear to be different chemoreceptors for the flagellar apparatus (in its membrane) and the spore
 - * Entire process of zoospore development and release is environmentally sensitive to nutrients, temperature, antibiotics, etc.
- Conidia
 - * Formed in various manners, but always external to the hypha or conidiophore
 - * Two basic types of conidial development:
 - Blastic swelling or budding of hyphae
 - Thallic fragmentation of hyphae

- * Regulation of conidiation
 - Traditionally difficult to study due to fact that cell growth is not synchronous across a colony
 - Solved via the culture of Aspergillus niger using a chemostat
 - In A. niger, three different nutritionally-related phases were uncovered
 - → Initiation of conidiophore (switch from vegetative to sporulation) nitrogen-limited, carbon-rich media
 - Development of conidiophore requires nitrogen and citrate (or similar Krebs cycle intermediate)
 - + Phialide formation nitrogen and glucose required
 - Whole process occurs on agar medium in a 1-2 mm zone located a few mm behind the leading edge of a hyphal colony
 - Presumably, in an asynchronous agar culture, physiological changes bringing about conidia formation is co-ordinated
 - Genetics of sporulation studied in A. nidulans leading to the discovery of three gene groups:
 - → Switch from somatic growth to sporulation
 - + Regulation of sporulation development
 - + Secondary aspects (e.g., spore color)
 - Some fungi require light to trigger sporulation
 - Near-UV light 1 hour exposure can induce system
 - + Blue light represses sporulation (e.g., *Botrytis cinerea*)
- * Role of hydrophobins
 - Hydrophobins are secreted proteins that are unique to fungi
 - Soluble in water, except at water/air interface where they form a film that surrounds a
 hyphae extending outwards, making it hydrophobic in nature and leading to different
 interactions among the hyphae/performing various functions

Sexual Development

- ◆ Sexual reproduction involves three fundamental processes:
 - * Plasmogamy fusion of haploid cells
 - * Karyogamy fusion of haploid nuclei
 - * Meiosis reduction division

- Two fundamental points of sexual reproduction
 - * Nature of sexuality
 - * Serves as a survival mechanism
 - * Nature of sexuality
 - Homothallic vs. heterothallic
 - Governed by mating type genes (compatibility)
 - Arrangement of mating types
 - Bipolar compatibility governed by a single gene locus where one of a non-allelic pair of genes (idiomorph) exists
 - + Tetrpolar compatibility two mating type gene pairs of multiple idiomorphs
 - * Survival mechanism
 - Dormancy
 - Mating type switching
 - * Mating type and hormonal control
 - Chytridiomycota
 - Allomyces is a homothallic fungus that produces separate male and female gametangia that release motile gametes
 - + Females release a pheromone, serinin, that attracts the male gametes
 - + Male gametes move along a concentration gradient
 - Sirenin and carotenoid color produced in male gametangia are produced from the same precursor, indicating mating type gene controls development of the sex organs
 - Oomycota
 - + Homothallic or heterothallic, but in most cases produces a colony with both male and female sex organs (antheridia and oogonia)
 - Mating type genes control capatibility
 - + Hormonal control in Achlya
 - Female produces antheridiol causing the male to increase production of cellulase which induces hyphal branching to increase
 - > Once triggered by antheridiol, males release oogoniols that induce oogonia development
 - > Eventually, male branches (antherida) fuse with oogonia

Zygomycota

- + Homothallic or heterothallic
- + Two mating type genes that govern conversion of □-carotene to a prohormone
- + Prohormone is eventually converted by mating-type specific gene to trisporic acid
- Trisporic acid volatilizes and causes hyphae of opposite mating type to grow towards one another and fuse to form a zygospore

Ascomycota

- Typically two mating types a cells and ☐ cells
- + Best characterized system is that of Saccharomyces
- Mating is controlled by the MAT gene locus of flanked by two other loci, MATa and MAT
 —A copy of one loci is made and inserted into MAT gene locus - this is now the mating type of the cell
- + This copy can switch out after each new bud cell is produced
- → MATa and MAT are responsible for producing:
 - > Peptide hormones a-factor and //-factor
 - > Hormone receptors
 - > Cell surface agglutinins
- + ☐ cells constitutively release ☐-factor that is recognized by a receptor on **a** cells
- + a cells cease growth and arrest at G₁ phase of the cell cycle, then release a-factor
- Different mating types then form outgrowths ("schmoo" cells) with strain specific agglutinins on their surfaces
- Agglutinins cause cells to bind to one another, which then leads to fusion (plasmogamy), followed by karyogamy (diploid formation)
- + Subsequent induction of meiosis produces four ascospores

Basidiomycota

- ◆ Most are heterothallic having one or two mating type loci (typically termed A and B) with mulitiple idiomorphs at each locus (e.g., A₁, A₂, A₃, etc.)
- ◆ Successful matings occur with different idiomorphs at each locus (e.g., A₁, B₁ x A₂, B₂)
- Different pairings of idiomorphs have allowed a dissection of the functions of the mating-type genes
 - A locus controls pairing and synchronous division of nuclei and initiation of clamp formation
 - » B locus controls septal dissolution, fusion of clamp branches, and increased glucanase activity