An integrative approach to delimiting species in a rare but widespread mycoheterotrophic orchid

CRAIG F. BARRETT* and JOHN V. FREUDENSTEIN†

*L. H. Bailey Hortorium and Department of Plant Biology, 412 Mann Library, Cornell University, Ithaca, NY 14850, USA,
†Department of Evolution, Ecology, and Organismal Biology, The Ohio State University Museum of Biological Diversity,
1315 Kinnear Road, Columbus, OH 43212, USA

Abstract

In the spirit of recent calls for species delimitation studies to become more pluralistic, incorporating multiple sources of evidence, we adopted an integrative, phylogeographic approach to delimiting species and evolutionarily significant units (ESUs) in the Corallorhiza striata species complex. This rare, North American, mycoheterotrophic orchid has been a taxonomic challenge regarding species boundaries, displaying complex patterns of variation and reduced vegetative morphology. We employed plastid DNA, nuclear DNA and morphometrics, treating the C. striata complex as a case study for integrative species delimitation. We found evidence for the differentiation of the endangered C. bentleyi (eastern USA) + C. striata var. involuta (Mexico) from the remaining C. striata (= C. striata s.s.; USA, Canada, Mexico). Corallorhiza striata involuta and C. bentleyi, disjunct by thousands of kilometres (Mexico-Appalachia), were genetically identical but morphologically distinct. Evidence suggests the C. striata complex represents three species: C. bentleyi, C. involuta and a widespread C. striata s.s under operational criteria of diagnosability and common allele pools. In contrast, Bayesian coalescent estimation delimited four species, but more informative loci and a resultant species tree will be needed to place higher confidence in future analyses. Three distinct groupings were identified within C. striata s.s., corresponding to C. striata striata, C. striata vreelandii, and Californian accessions, but these were not delimited as species because of occupying a common allele pool. Each comprises an ESU, warranting conservation considerations. This study represents perhaps the most geographically comprehensive example of integrative species delimitation for any orchid and any mycoheterotroph.

Keywords: integrative taxonomy, morphology, phylogeography, population

Introduction

Explicit species delimitation studies represent an essential component of systematics, yet they are currently underrepresented relative to phylogenetic studies (Wiens 2007). This is unfortunate, because delimiting species represents a crucially important first step in framing studies of conservation, ecology, evolution, phylodynamics and population genetics. However, there is no universal consensus on how this should be accomplished, although numerous methods have been proposed (e.g. Davis & Nixon 1992; Baum & Shaw 1995; Doyle 1995; Wiens & Penkrot 2002; reviewed in Sites & Marshall 2004; Knowles & Carstens 2007; Yang & Rannala 2010). Despite important advances in sequencing technology and coalescent theory [coalescent gene/species tree approaches (e.g. Yang & Rannala 2010)], there exists a strongly professed need to utilize multiple forms of evidence. Many researchers favour a multifaceted,
integrative approach to delimiting species (e.g. Wiens & Penkrot 2002; Sites & Marshall 2004; Dayrat 2005; Will et al. 2005; Roe & Sperring 2009; Groenveld et al. 2009; Leaché et al. 2009; Padial & de la Riva 2010; Padial et al. 2010; Schlick-Steiner et al. 2010; Weisrock et al. 2010), including the architects of a recently published Bayesian coalescent molecular approach: “At a minimum, species delimitation should rely on many kinds of data, such as morphological, behavioural, and geographic evidence (Yang & Rannala 2010).” We adopt a pluralistic, integrative approach to delimiting species and ESUs in a group of fungus-eating orchids, the Corallorhiza striata complex. We utilize 14 quantitative morphological characters, eight morphological landmarks, two plastid DNA loci and three nuclear loci to investigate the patterns of variation and delimit species across populations spanning the entire geographic range.

A case study in a widespread, variable orchid

Morphology, behaviour, phylogeography and population genetics play important, often crucial, roles in taxonomic and speciation studies, and thus are paramount in conservation biology. Rangewide investigation is the ideal method for informing species decisions, which in turn provides the information necessary to best preserve variation within the resultant taxa. The geographic ubiquity and unmatched species richness of orchids among plants, combined with their tendency to be rare and endangered (Dressler 1981, 1993), illustrate the need for these types of studies. The Corallorhiza striata species complex is rare but widespread, highly variable and has historically been a taxonomically challenging group (Freudenstein 1997), owing to its severely reduced vegetative and root morphology. Thus, it will be especially crucial to examine multiple sources of data in highly reduced parasitic and mycoheterotrophic species, augmenting morphology with DNA sequences. Barrett & Freudenstein (2009) identified four plastid DNA clades within the C. striata complex. Corallorhiza striata var. involuta (Mexico) and the endangered C. bentleyi (eastern USA) were virtually identical for the loci examined, forming a distinct clade, and were together highly divergent relative to the rest of the complex. These two small-flowered, apparently self-pollinating taxa were also morphologically distinct from the remainder of the complex, and furthermore distinct from one another, suggesting their recognition as two separate species. The remaining populations of C. striata, hereafter termed C. striata sensu stricto (= s.s.), also formed a clade. Nested within this clade were three subclades, each significantly differentiated in terms of floral size. The large-flowered C. striata var. striata (northern USA and Canada) was sister to the smaller-flowered C. striata var. vreelandii, and these in turn were sister to an intermediate-flowered clade endemic to California.

Despite these preliminary findings, numerous questions remain regarding the patterns of variation in the C. striata complex, especially as they relate to species boundaries. Questions addressed here are as follows: (i) In the context of geographic distribution, does nuclear DNA, plastid DNA and morphology provide evidence for separate species within the C. striata complex under a phylogenetic species concept? (ii) Does Bayesian coalescent analysis similarly delimit separate species? (iii) What is the rangewide population structure of C. striata s.s., and are vars. vreelandii, striata and Californian accessions fully differentiated based on nuclear and plastid DNA? (iv) Does nuclear DNA provide evidence for gene flow between distinct plastid DNA/morphogeographic groupings? (v) Lastly, is there evidence for ESUs in the complex? To address these questions, we utilized several analytical approaches, including gene tree and network construction, assignment tests, hierarchical analysis of molecular variance, coalescent estimation of gene flow, ordination, Bayesian species delimitation and various other statistical tests. To our knowledge, investigation of the C. striata complex represents one of the most geographically extensive analyses to date for any orchid species complex (and also any mycoheterotrophic species).

Materials and methods

Orchid sampling, DNA extraction, amplification, sequencing and phasing

Two to ten individuals were collected per sampling locality across North America (Appendix S1, Supporting information). When possible, a single basal flower per individual was collected for morphological analysis. At least one individual from each population was vouchersed at Ohio State University Herbarium. Sampling efforts were focused towards C. striata in the USA and Canada; accessions of C. bentleyi and C. striata var. involuta were included in this study but could not be sampled to the same extent as the remainder of C. striata because of rarity and difficulty obtaining material. Individuals were sampled only if they were >1 m apart to avoid sampling vegetative clones.

DNAs were extracted using a CTAB protocol (Doyle & Doyle 1987). Plastid loci rbcL and rpl32-trnL spacer were amplified and sequenced for 189 individuals following Barrett & Freudenstein (2008) and Shaw et al. (2007), respectively. Plastid outgroup taxa were chosen as in the method described by Barrett & Freudenstein (2009). Sets of published nuclear primers (e.g. Emshwiller & Doyle
1999; Strand et al. 2000) were tested on Corallorhiza striata and congeners, resulting in only three regions that amplified single bands. Primers NIAI3-F and NIAI3-R (Howarth & Baum 2002) were used to amplify intron three of nitrate reductase. The region corresponding to RPB2 intron 23 in Arabidopsis thaliana was amplified with primers P10-F and P11a-R (Denton et al. 1998). RPB2 encodes RNA polymerase II subunit B and is single copy in diploid monocots (e.g. Specht 2006; Roncal et al. 2008). The region corresponding to flavanone 3-hydroxylase gene (F3H) intron II in the orchid Bromheadia fritaysoviana was amplified with primers Flav-F2 and Flav-R (Taylor et al. 2004). Both of these markers (RPB2 and F3H) have been utilized successfully in congener C. maculata (Taylor et al. 2004). Polyploidy has never been documented in Corallorhiza, and the diploid chromosome number (2n) for C. striata is 42 (Löve & Simon 1968; Löve & Löve 1981).

Nuclear intron sequencing was completed as for plastid loci (Barrett & Freudenstein 2008), for a total of 162 individuals each. Nitrate reductase showed clear evidence of multiple copies, so no further sequencing was undertaken for this locus. RPB2 and F3H introns each demonstrated expected patterns for single copy genes. No length variation was observed in either region, so they were both sequenced directly, and ambiguity codes were initially applied to heterozygous positions. The nuclear ribosomal internal transcribed spacer (ITS) was amplified and sequenced as in the method described by Barrett & Freudenstein (2008). No evidence of multiple ITS copies within individuals was observed. Variation at this locus was informative but limited, so a subset of individuals (n = 44) representing nearly all populations from across the range was sequenced to define ITS types. For the remaining individuals, allele-specific primers ITS-striata-R (GTTCGGACGAAGCGACGCAAACA), ITS-vree-R (GTTCGGACGAAGCGACGAAACG) and ITS-Cali-R (CCGACACAC TTAGTGTGATT) were used in combination with primer ITS1 (White et al. 1990) in a PCR assay to identify the ITS types based on nucleotide polymorphisms. PCR conditions followed the procedure carried out by Barrett & Freudenstein (2008). Each template was subjected to PCR with each primer combination, along with both negative and positive controls (i.e. accessions previously sequenced) to confirm amplification with the correct corresponding allele-specific reverse primer. Sequences were aligned in MUSCLE 3.6 (Edgar 2004). Alignments were free of singleton mutations that would likely represent PCR base misincorporations. PHASE 2.1.1 (Stephens et al. 2001; Stephens & Donnelly 2003) was used to determine the allelic sequences of heterozygous intron amplicons. Five independent runs of 20,000 iterations were implemented from random seeds, discarding the first 5000 as burn-in and allowing recombination. Runs indicated that a minimum posterior probability of 0.9 was recovered for each position.

Recombination, phylogenetic and network analyses

Patterns derived from the plastid loci used in this study were previously demonstrated to be free of topological conflict (Barrett & Freudenstein 2009), so the loci were combined as a single plastid data set. Gene trees for the plastid matrix were constructed under both maximum parsimony (MP) and likelihood (ML). TNT (Goloboff et al. 2008) was used to implement MP searches, with 100 random addition sequence replicates and tree bisection-reconnection branch swapping, holding a total of 10 000 trees. Branch support was assessed via jackknifing using the same search parameters as above for 5000 pseudoreplicates, with 37% deletion probability. The GTR + I model was selected for combined plastid DNA under the Akaike information criterion (Akaike 1974) in MODELTEST (Posada & Crandall 1998). ML searches were conducted in RAXML (Stamatakis 2006b), using the GTR-MIX model, with C = 25 rate categories. GTRMIX uses the GTRCAT approximation to assign per-site parameters to a predefined number of categories and then uses the GTR-Γ model to evaluate the likelihood (Stamatakis 2006a). Bootstrap searches (2000 replicates) were run using the GTRCAT approximation (Stamatakis 2006a).

DNASP 4.10.1 (Rozas et al. 2003) was used to determine the minimum number of recombination events (R_M; Hudson & Kaplan 1985) per nuclear intron. MAXCHI^2 (Maynard Smith 1992) and GENECONV (Padidam et al. 1999) were employed using 10 000 permutations, with Bonferroni correction for multiple comparisons (Rice 1989) in RDP3 (Heath et al. 2006). Lastly, the Φ-test was implemented using SPLITSTREE 4 (Huson 1998; Huson & Bryant 2006). Also estimated with dNAsP were haplotype diversity (θ), the probability that two haplotypes are different), nucleotide diversity (π, the average number of nucleotide substitutions per site of two randomly drawn sequences; Nei & Li 1979; Tajima 1983), Tajima’s D (Tajima 1989) and Fu’s F_S (Fu 1997); the latter two are tests of selective neutrality.

Trees of representative nuclear alleles were estimated for each locus separately in PAUP 4.0b (Swoford 2003), implementing MP heuristic searches as earlier (100 RAS, TBR, hold 10 000 trees), and 2000 jackknife replicates using these same parameters. An accession of Corallorhiza wisteriana (JVF 2789a FL) was used as the outgroup for these sequences, which has been shown to be a member of the sister clade to the C. striata complex (Barrett & Freudenstein 2008; Freudenstein & Senyo 2008); this species was chosen because of difficulty
amplifying nuclear introns in the outgroup taxa chosen for plastid DNA analyses. Nuclear relationships between all sampled individuals of *C. striata* s.s. were assessed via minimum-spanning networks in TCS 1.21 (Clement et al. 2000), with 95% connection limits. Lastly, a multilocus distance network of relationships between individuals within *C. striata* s.s. was obtained with POFAD 1.03 (Joly & Bruneau 2006).

**Analysis of population structure**

Two approaches were employed to ascertain population structure of *C. striata* s.s. First, a Bayesian genetic assignment algorithm was implemented in STRUCTURE 2.3 under a correlated allele frequency model allowing for admixture of individuals (Pritchard et al. 2000). Plastid and nuclear data were combined, with the ‘other’ copy of the plastid data per individual coded as missing (J. Pritchard, personal communication), and then STRUCTURE was run with nuclear data only. Twenty replicate runs were completed for values of the number of clusters, $K$, from $K = 1$–8. Runs consisted of 10 000 000 generations of the Markov chain Monte Carlo (MCMC), following a burn-in of 5 000 000 generations. The $\Delta K$ method (Evanno et al. 2005) was used to determine the number of genetic clusters.

Second, analysis of molecular variance (*AMOVA*, Excoffier et al. 1992), implemented in ARLEQUIN 3.1 (Excoffier et al. 2005), was used to assess the partitioning of genetic variation among groupings and localities for both plastid and nuclear data and its significance (10 000 permutations). Plastid data (combined *rbcL* and *rpl32-trnL* spacer) were partitioned by clade (excluding *C. bentleyi* and *C. striata* var. *involuta*) and then by sampling locality. Nuclear intron data were partitioned by plastid clade membership, then by sampling locality and individual; they were treated as unknown-phase multilocus genotypes. AMOVA was not calculated for ITS data, because of low polymorphism.

**Gene flow estimation within *C. striata* s.s.**

Coalescent analyses of gene flow were conducted in MIGRATE 3.1.2 (Beerli & Felsenstein 1999, 2001) to assess long-term nuclear gene flow between *C. striata* s.s., *vreelandii* and Californian accessions. MIGRATE uses the Wright–Fisher model of gene flow to estimate the values $\Theta = 4N_e\mu$ and $M_i \rightarrow j$, where $N_e$ = effective population size, $\mu$ = substitutions/site/generation (s/s/g) and $M_i \rightarrow j$ = migration rate from deme i to deme j. This model assumes constant $N_e$, $\mu$, and $M$ over time and drift–migration equilibrium. Exponential and uniform prior distributions were placed on $\Theta$ (mean = 0.002, range = 0.0–0.1) and $M$ (mean = 100, range = 0–2000), respectively; these priors outperformed various other prior combinations in preliminary runs. Six heated Markov chains (temperatures 1, 1.5, 3, 10, 100 and 100 000) were run for $4 \times 10^7$ steps, with a burn-in period of $6.0 \times 10^6$ steps. Three runs were completed from different random starting seeds, and adequate Markov chain mixing was verified by effective sample size (ESS) values for all parameters exceeding 300. To incorporate uncertainty into estimates of $N_e$ and $M_i \rightarrow j$, substitution rates were calculated based on values $+/−$ an order of magnitude around the estimate of $7.0 \times 10^{-9}$ substitutions per site/year (noncoding nuclear DNA; Wolfe et al. 1987; Hewitt 2000). This estimate was converted to substitutions/site/generation assuming a generation time of 5 years based on field experiments in *Corallorhiza* (Correll 1950; Rasmussen 1995).

**Bayesian species delimitation**

A multilocus, coalescent species delimitation analysis was conducted using the program BPP 2.0 (Rannala & Yang 2003; Yang & Rannala 2010). This method adopts the biological species concept (BSC) (see Yang & Rannala 2010), using a species phylogeny represented by a user-specified guide tree, and accommodates lineage sorting because of ancestral polymorphism. The guide tree chosen was the plastid DNA topology of Barrett & Freudenstein (2009). To assess the effect of alternate guide tree topologies (i.e. species tree uncertainty), branches within *C. striata* s.s. were rearranged in additional runs. Ten individuals each of var. *striata*, var. *vreelandii* and Californian accessions were analysed (one randomly selected individual from each of ten randomly selected localities for each); likewise, three individuals each were selected for *C. bentleyi* and *C. striata* var. *involuta*. A gamma prior ($G$) was used to specify the population size parameter $\Theta$ and root age $\tau_0$ of the species tree. Three population size/species tree age combinations were modelled (e.g. see Leaché & Fujita 2010): large $N_e$ + deep divergence time [$G(1,10)$ for $\Theta$ and $\tau_0$], large $N_e$ + shallow divergence time [$G(1,10)$ for $\Theta$ and $G(2,2000)$ for $\tau_0$] and small $N_e$ + shallow divergence time [$G(2,2000)$ for $\Theta$ and $\tau_0$]. Other divergence time parameters were assigned a Dirichlet prior (Yang & Rannala 2010: equation 2). Each analysis of 500 000 MCMC generations was run twice from different starting seeds with a burn-in period of 50 000; this gave consistent parameter estimates between replicate runs and ESS values >1000 for all parameters.

**Floral morphometrics**

Fourteen continuous floral characters were scored (Appendix S3F, Supporting information). A total of 134 individuals were measured, including 36 individuals of
var. *striata*, 32 individuals of var. *vreelandii*, 35 Californian individuals, eight individuals of var. *involuta* and 23 individuals of *Corallorhiza bentleyi*. Data were analysed using *PAST* 1.91 (Hammer et al. 2001) and SPSS 17 (SPSS Inc., Chicago, Illinois, USA) and tested for multivariate normality as in Barrett & Freudenstein (2009). Measurements were log-transformed, a variance/covariance matrix was constructed, and principal component analysis (PCA) was used to identify the clusters of individuals in multivariate space. Canonical variates analysis (CVA) and multivariate analysis of variance (MANOVA) were used to test the statistical significance of morphological distinctness based on a priori groupings, respectively. To investigate labellum shape variation in the *C. striata* complex, the labella of 118 individuals were scanned at 2400 dpi. Labella were shown to be particularly informative in a previous investigation (Barrett & Freudenstein 2009), so eight labellum landmarks (Appendix S3G, Supporting information) for 118 individuals were assigned using *TpsDig* 2 (Rohlf 2004). Landmarks were transformed to Procrustes coordinates in *PAST* 1.91 (Hammer et al. 2001), subjected to thin-plate spline analysis (TPS, Bookstein 1989), and partial warp scores were used in ordination analyses (shape-PCA, CVA).

Results

Plastid and nuclear DNA relationships

Topologies for combined plastid *rbcL* and *rpl32-trnL* spacer (Fig. 1) under parsimony (Fig. 1) and likelihood (Appendix S2, Supporting information) were topologically identical to Barrett & Freudenstein (2009) but included more than the number of accessions. Variety *striata* [jackknife support (JK) = 91, bootstrap support (BS) = 90], var. *vreelandii* (JK = 85, BS = 88) and the Californian accessions (JK = 100, BS = 100) each comprised unique clades; the former were sister to one another and collectively sister to the Californian clade (JK = 99, BS = 100). Sister to (and highly distinct from) this entire clade (JK = 100, BS = 100) was a clade composed of *C. bentleyi* and *C. striata* var. *involuta* (JK = 100, BS = 100). As in Barrett & Freudenstein (2009), *C. bentleyi* and *C. striata* var. *involuta* were not genetically distinct from one another. In fact, the only variation observed in this clade was represented by a single unique accession of *C. striata* var. *involuta* from Oaxaca, Mexico (accession JVF 2155 OAX), sister to a plastid haplotype of *C. striata* var. *involuta* (*n* = 7 accessions) and *C. bentleyi* (*n* = 6 accessions).

Neither MAXCHI nor GENECONV tests detected significant recombination signal within nuclear introns; the *Φ*-test detected only marginally significant recombination for *F3H* (Appendix S3A, Supporting information). Hudson & Kaplan’s (1985) test, however, identified a minimum of two recombination events (*R*ₜₐₜ) for RPB2, and three for *F3H*, based on site-pair incompatibilities. Each intron was split into nonrecombining regions based on breakpoints from the Hudson & Kaplan (1985) test and confirmed to be free of recombination. RPB2 was split into two regions, hereafter referred to as RPB2-5’ and RPB2-3’ (231 and 122 nucleotides in length, respectively). The first 40 and last 4 base positions were removed from *F3H*, leaving a nonrecombining region of 385 bp.

Both nuclear intron loci and ITS differentiated a clade composed of *C. bentleyi* + *C. striata involuta* from *C. striata* s.s.; the former clade showed no genetic variation for any of the three nuclear intron regions (Appendix S4A–C, Supporting information). The *C. bentleyi* + *C. striata involuta* clade shared no nuclear alleles with *C. striata* s.s. ITS showed extremely limited variation (Appendix S4D, Supporting information), but substantial geographic structure. First, a *C. bentleyi*–*involuta* clade and *C. striata* s.s. clade were each recovered (JK = 100 for each); as with the nuclear introns, no differentiation was detected in the former. ITS resulted in a polytomy for relationships within *C. striata* s.s. (Appendix S4D, Supporting information), with var. *striata* and accessions of var. *vreelandii* from Hidalgo, Mexico, each bearing unique ITS types. The remaining var. *vreelandii* accessions also comprised a unique ITS type, closely related to another that contained all accessions from California. Two accessions from the western Cascade Range in Oregon (CBF 29a and b, Lane Co., OR, USA) each harboured one allele matching var. *striata* and one matching Californian accessions. Allele-specific primers for ITS variants clearly discriminated between ITS types, allowing characterization of individuals from populations of each.

Within *C. striata* s.s. (Fig. 2a–c), nuclear intron sequences did not demonstrate the exclusivity of alleles among subgroups (i.e. plastid clade groupings). However, alleles for each locus had nonrandom distributions among the three groupings (log-likelihood ratio G-test; *P* < 0.0001 each). Individuals of varieties *vreelandii* and *striata* cluster in distinct regions of the multilocus network of Fig. 3, which here is more apparent than in each single locus network (Fig 2a–c). However, var. *vreelandii*, var. *striata* and Californian accessions are not completely exclusive. First, individuals from California do not form a highly distinct cluster; they occupy intermediate positions in the network and are generally interspersed among individuals of both vars. *vreelandii* and *striata*. Second, a few accessions of var. *striata* (accessions 29a OR and 29b OR from Oregon, USA, and 125E WY from Wyoming, USA) grouped more closely with individuals of var. *vreelandii* and Californian individuals.
Corallorhiza striata
Corallorhiza striata var. vreelandii
(Southwestern USA/Mexico)
Corallorhiza striata var. striata
(Northern USA/Canada)
Corallorhiza striata var. involuta
(Mexico)

Corallorhiza bentleyi
(Virginia/W. Virginia, USA)

Californian accessions

Fig. 1 One of fourteen most parsimonious trees (Consistency Index (CI) = 0.93, Retention Index (RI) = 0.95) based on combined rbcL, rpl32-trnl spacer and indel characters. Maximum parsimony (MP) jackknife (5000 pseudoreplicates) and ML bootstrap values (2000 pseudoreplicates) are adjacent to branches (MP/ML). Zigzags represent truncated branches. Black = C. striata vreelandii, grey = Californian accessions, white = C. striata striata, striped = C. bentleyi and dotted = C. striata involuta.
Assignment tests for the nuclear-only data set indicated that the number of genetic clusters (K) was most likely 2 or 3 (Table 1), shown by ΔK values, with relatively high values for both K = 2 and K = 3. When plastid DNA was included, there was stronger evidence for K = 3. Under both scenarios of K = 3 (Appendix S5, Supporting information), genetic assignments matched the initial designation (i.e. var. striata, var. vreelandii, and Californian accessions) for 151 of 155 individuals. The other four individuals showed significant evidence of admixture between the genetic clusters (i.e. <95% of an individual’s genotype was from any single genetic cluster). Because the values of ΔK for K = 2 and K = 3 were so similar for nuclear data, and the inclusion of plastid data showed stronger evidence for K = 3, it is more likely that there are three genetic clusters among the individuals sampled. Therefore, K = 3 was chosen for hierarchical AMOVA.

AMOVA of combined plastid rbcL and rpl32-trnL spacer (Table 2) partitioned 44.82% of the total genetic variation between clades A–C (ΦCT = 0.45, P < 0.0001), while 20.47% was explained among sampling localities and 34.71% within them (respectively, ΦSC = 0.37, ΦST = 0.65, P < 0.0001 each). Pairwise ΦCT comparisons were all significant (Appendix S3B, Supporting information). Most of the significant nuclear variation in C. striata s.s. was observed between a priori plastid clade groupings (mean across loci = 45.17%, ΦCT = 0.45, P < 0.0001) and within individuals (mean across loci = 42.93%, ΦIT = 0.57, P < 0.0001). Furthermore, all pairwise nuclear ΦCT comparisons were highly significant.

Population structure of C. striata s.s.

Fig. 2 Statistical parsimony networks for C. striata sensu stricto nuclear intron loci and internal transcribed spacer generated in TCS (95% connection limit). Pie charts represent individual alleles, their sizes proportional to their frequency in the sample. (a) Flavanone 3-hydroxylase intron II (F3H), (b) 5’ region of RNA Polymerase II Second Subunit intron 23 (5’ RPB2), (c) 3’ region of RPB2 intron 23, (d) Internal Transcribed Spacer (ITS). The three colours represent plastid DNA group membership: white = var. striata, black = var. vreelandii and grey = California.

Fig. 3 Pofad genetic distance network of C. striata sensu stricto individuals based combined nuclear intron alleles. Tips of the network represent unique multilocus genotypes.
among plastid groupings ($P < 0.0001$). No linkage disequilibrium was detected among the three nuclear intron loci ($P < 0.0001$). Significant deviations from HWE were observed in a few instances (Appendix S3E, Supporting information), most notably in var. *vreelandii* for *F3H* and *RPB2-5′*. Nuclear intron diversity ($h, \pi$; Appendix S3D, Supporting information) was highest in the Californian group, followed by var. *strata* and var. *vreelandii*; in contrast, the Californian group displayed the lowest plastid DNA (ptDNA) diversity, while var. *strata* had the highest. Nonsignificant Tajima’s $D$ and Fu’s $Fs$ suggested selective neutrality for each locus.

### Gene flow

Estimates of the effective number of migrants per generation ($N_m$) were all below one, suggesting little to no gene flow between these three groupings (Appendices S3E and 6, Supporting information). However, estimates of both $N_c$ and $N_m$ have wide credibility intervals, reflecting substantial uncertainty. The $95\%$ posterior densities of all $M$-parameter estimates include zero, indicating that more loci will be needed to reduce uncertainty around estimates of gene flow and effective population sizes. For each grouping, estimates of $\Theta$ and $M$ displayed unimodal posterior distributions (Appendix S6, Supporting information). Despite wide credibility intervals, the shapes of these posterior distributions (Appendix S6, Supporting information) provide better indicators than the mean estimates. For example, posterior distributions for $M_{\text{California}} \rightarrow \text{vreelandii}$, $M_{\text{vreelandii}} \rightarrow \text{California}$ and $M_{\text{strata}} \rightarrow \text{California}$ all reach their peaks at zero, while $M_{\text{strata}} \rightarrow \text{vreelandii}$ and $M_{\text{California}} \rightarrow \text{strata}$ have nonzero peaks (the distribution for $M_{\text{vreelandii}} \rightarrow \text{strata}$ near zero was relatively ambiguous).

### Morphology

Principal component analysis (Fig. 4a) of 134 individuals and 14 morphological characters yielded groupings consistent with the findings of Barrett & Freudenstein (2009). The distinctness of *C. strata* var. *involuta*, *C. bentleyi* and *C. strata* s.s. persists in the light of increased sample size relative to the aforementioned study. Mardia’s test confirmed multivariate normality ($P > 0.1$ for all comparisons). Canonical variates analysis and PCA (Fig. 4b,a, respectively) recovered similar overall structure; *MANOVA* demonstrated significant differentiation of groupings (Wilk’s $\lambda = 0.0086$, $P < 0.0001$), with significant differences for each pairwise comparison (Hotelling’s $T^2$, $P < 0.01$ each). Thus, both PCA and CVA clearly illustrate morphological distinctness among these groupings (these are merely mapped onto PCA axes and play no part in calculations as they do in CVA). PCA (Fig. 4a) suggests overlap for a few Californian individuals with both vars. *strata* and *vreelandii*, but all three groupings had significantly different centroids. PC1 and CV1 differentiate *C. strata* s.s. from the *C. bentleyi*-*involuta* clade, as well as explain the vast majority of the variation within *C. strata* s.s.; these largely represent overall correlated size variation. Column length and perianth length + width characters (petals, sepals and labellum) contribute most strongly to PC1 and CV1 (Appendix S3F, Supporting information). PC2 and CV2 differentiate *C. bentleyi* and *C. strata* var. *involuta*, largely based on callus length and width (Appendix S3F, Supporting information).

Shape-PCA and CVA of Procrustes-transformed labellum landmarks clearly differentiated *C. bentleyi* from all other members of the *C. strata* complex (Fig. 4c,d). Most notably, the position of the callus apex (landmarks G and H; Fig. 5) extends below the widest point of the labellum (landmark B; Fig. 5) in *C. bentleyi* relative to
other members of the complex. This finding illustrates an important distinction from var. involuta, which is otherwise highly similar to C. bentleyi in terms of overall flower size. Although partially overlapping with var. vreelandii and Californian accessions, both C. striata var. striata and C. striata var. involuta occupy more restricted regions of shape space. Nonetheless, CVA/MANOVA of partial warp scores suggests that although there is visible overlap for C. striata s.s. groupings on CV1 and CV2, their centroids still differ significantly (Wilk’s $\lambda = 0.029$, $P < 0.0001$; all pairwise Hotelling’s $T^2$ $P < 0.01$). CVA of 82 individuals based on combined DNA
and morphological data (Fig. 4e) produced clusters that corresponded well with each of the three a priori groupings (Wilk’s $\lambda = 0.007$, $P < 0.0001$).

**Bayesian species delimitation in the C. striata complex**

For all prior parameter combinations, the four-species model (1110; Appendix S3H, Supporting information) had posterior speciation probabilities >0.98; this model specified var. striata, var. vreelandii and Californian populations as separate species, with C. bentleyi + C. striata involuta as a single species. In comparison, the five-species model (1111; Appendix S3H, Supporting information) displayed extremely low posterior probabilities under all prior combinations (<0.02 in all cases; Appendix S3H, Supporting information). However, further analyses under different guide tree topologies (i.e. using all three possible topologies within C. striata s.s. to reflect tree uncertainty among these entities) gave similarly high posteriors for the four-species model.

**Discussion**

Recent proposals regarding integrative species delimitation have suggested a more or less algorithmic set of steps for delimiting species using multiple sources of data (e.g. Padial et al. 2010; Schlick-Steiner et al. 2010). One of the many challenges in implementing algorithmic approaches is how to incorporate and reconcile operational criteria, especially when they differ (but see Padial & de la Riva 2010). Further, a recent discussion in integrative taxonomy is whether congruence among data types is required or whether ‘cumulation’ can be invoked, whereby any data type is sufficient for delimiting species when considered in combination with other types of data. In the extreme cases, the former has been criticized for being too conservative.
cies delimitation of what, if any, weights should apply to certain data types. Here, we emphasize nuclear DNA and morphological data, with plastid DNA playing a secondary role. It is well documented that uniparentally inherited organellar DNA often displays substantially greater structure than nuclear DNA, morphology, ecological niche, etc., by virtue of geography (see Avise 2000). Furthermore, the fourfold difference in Ne between nuclear and organellar DNA (in sexually reproducing diploids) means that organellar DNA will reach fixation of different combinations of variants or reciprocal monophyly among populations faster than nuclear DNA (Avise 2000; Hare 2001; Palumbi et al. 2001; Zink & Barrowclough 2008). For these reasons, we are reluctant to place too much emphasis on organellar DNA as the sole means of delimiting species.

Based on nonoverlapping patterns of floral size variation, C. striata s.s. and C. bentleyi + C. striata involuta are distinct (Fig. 4a,b). A closer investigation of labelum morphology reveals that the primary difference between C. bentleyi and C. striata involuta is in labellum shape, specifically the relative positions of the callus apex and the widest point of the labellum (Figs 4C,D and 5). To the extent of our sampling, this represents a fixed, diagnosable character state difference and identifies C. bentleyi and the remaining C. striata as phylogenetic species. Freudenberg (1999) originally noted this difference upon describing the recently discovered C. bentleyi, but those observations were based on few individuals from a single population in West Virginia, USA. Here, we have demonstrated consistent labelum/callus differences among multiple populations of C. bentleyi and C. striata involuta. Greenman (1898) described C. involuta, which was later downgraded to a

(i.e. identifying only old species) and thus underestimating species diversity, while the latter has been criticized for the opposite reason (Padial et al. 2010). We view concordance among data types as sufficient but not necessary for justifying species delimitation (see de Queiroz 2007). We interpret ‘cumulative’ integration of multiple data types as being more in agreement with our goal of identifying the units suitable for phylogenetic analysis.

Phylogenetic species concepts (PSC) aim to identify the smallest units suitable for phylogenetic analysis (El-dredge & Cracraft 1980; Nelson & Platnick 1981; Cracraft 1983, 1989). Of the various incarnations of the PSC, we generally favour the ‘diagnosable’ version of Nixon & Wheeler (1990) because of its explicit criteria for recognizing species, aiming to identify ‘...the smallest aggregation of populations (sexual) or lineages (asexual) diagnosable by a unique combination of character states in comparable individuals...’ We also favour Doyle’s (1995) method for identifying units of character states in comparable individuals...’ We also favour Doyle’s (1995) method for identifying units of

Evidence for species delimitation is summarized in Fig. 6. The question naturally arises in integrative species delimitation of what, if any, weights should apply

![Diagram of evidence for species delimitation in the C. striata complex](image)

(a) pIDNA  
(b) C. striata s.s.  
(c) rDNA  
(d) BPP  
(e) Morphology  
(f) Geography  
(g) Phenology

Fig. 6 (a). Schematic representation of evidence for species delimitation in the C. striata complex. Solid lines indicate complete exclusivity (or allopatry in the case of geography); dashed lines indicate incomplete exclusivity but substantial differences (or parapet); no line indicates no evidence for differentiation.

(b) Summary of evidence supporting delimitation of three species in the C. striata complex. "Corallorhiza striata involuta and C. striata vreelandii are narrowly parapatric in Mexico; no populations were found to harbour both."
variety within *C. striata* by Freudenstein (1997). Although *C. striata involuta* does not display fixed floral shape differences from *C. striata* s.s., nonoverlapping floral size differentiates it from the latter (Fig. 4a,b).

A pertinent question that arises when considering DNA sequence data under a phylogenetic species concept is “what in fact constitutes a diagnosable character?” Fig. 1 illustrates four main plastid clades; if under one rather liberal interpretation, the *C. striata* complex would contain four species presently described as *C. bentleyi* + *C. striata involuta* (both as a single species), var. *striata*, var. *vreelandii* and Californian populations. However, for the reasons stated earlier, we do not interpret this to be the case, specifically with respect to each of the three clades of *C. striata* s.s. representing separate species. However, *C. striata involuta* is clearly not a variety of *C. striata*, in that it is virtually genetically identical to *C. bentleyi*. Rather, *C. bentleyi* and *C. striata involuta* together are highly divergent from *C. striata* s.s., representing the basal-most divergence in the *C. striata* complex (Fig. 1).

For all nuclear loci examined, *C. bentleyi* + *C. striata involuta* were identical and further distinct from members of a highly variable *C. striata* s.s. (Appendix S4, Supporting information). This finding corroborates the pattern from ptDNA (Fig. 1) at the deepest level within the *C. striata* complex, further bolstering support for *C. striata involuta* as separate from *C. striata* s.s. Applying a phylogenetic species concept in a multilocus sense is not as straightforward as with organellar DNA, although methods do exist (e.g. Davis & Nixon 1992; Brower 1999). Obviously, *C. bentleyi* + *C. striata involuta* are not in the same FFR (sensu Doyle 1995) as *C. striata* s.s., because these two groups share no alleles. However, vars. *vreelandii*, *striata* and Californian accessions share nuclear F3H and RPB2 alleles in the form of heterozygotes (Fig. 2); this is even the case for two individuals from a population in Oregon being heterozygous for ITS variants unique to Californian and more northern var. *striata* populations. Thus, a pattern conducive to separate allele pools (sensu Doyle 1995), identifying units suitable for phylogenetic analysis, was not observed within *C. striata* s.s.

**POFAD** (Fig. 3), **structure** (Table 1; Appendix S5, Supporting information), **AMOVA** (Table 2) and **migrate** (Appendices S3E and 6, Supporting information) analyses, however, do suggest significant patterns of genetic differentiation between the three entities of *C. striata* s.s. Taken together with the pattern of morphological and ptDNA variation, these entities closely fit Moritz’s (1994) definition of ESUs: “ESUs should be reciprocally monophyletic for mtDNA (in animals) and show significant divergence of allele frequencies at nuclear loci.”

We consider ESUs to be distinct, relevant units for conservation within a species. Thus, although these three entities do not qualify as separate species occupying exclusive FFR, their infraspecific nomenclature (each at the level of variety) should reflect this distinctness and align closely with their status as ESUs.

The lack of genetic variation between *C. bentleyi* and *C. striata involuta* was surprising but is not necessarily evidence of a single species (i.e. negative evidence, see de Queiroz 2007). This pattern could either be attributed to the particular loci selected (i.e. assuming there are other, more variable loci that will differentiate them) or to the existence of truly genetically indistinguishable, geographically disjunct sets of populations. It is not presently possible to differentiate among these scenarios; additional high variation loci will be needed to address this issue in more detail.

Bayesian species delimitation using **BPP** sensu Yang & Rannala (2010), in part, stems from their interpretation of the BSC, incorporating incomplete lineage sorting: “Here, we adopt the BSC, recognizing groups that have

**Table 2** Analysis of molecular variance for *C. striata* s.s. nuclear intron and plastid loci, excluding *C. bentleyi* and *C. striata* var. *involuta*

<table>
<thead>
<tr>
<th>Locus</th>
<th>b/w clades</th>
<th>b/w loc</th>
<th>w/in loc</th>
<th>w/in ind</th>
<th>(\Phi_{IS})</th>
<th>(\Phi_{ST})</th>
<th>(\Phi_{SC})</th>
<th>(\Phi_{CT})</th>
<th>(\Phi_{IT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3H</td>
<td>49.54</td>
<td>13.70</td>
<td>2.45</td>
<td>34.31</td>
<td>0.07</td>
<td>n/a</td>
<td>0.27**</td>
<td>0.50**</td>
<td>0.66**</td>
</tr>
<tr>
<td>RPB2-5'</td>
<td>49.27</td>
<td>11.02</td>
<td>5.50</td>
<td>34.21</td>
<td>0.14*</td>
<td>n/a</td>
<td>0.22**</td>
<td>0.49**</td>
<td>0.66**</td>
</tr>
<tr>
<td>RPB2-3'</td>
<td>36.66</td>
<td>5.72</td>
<td>-2.71</td>
<td>60.33</td>
<td>-0.05</td>
<td>n/a</td>
<td>0.09**</td>
<td>0.37**</td>
<td>0.40**</td>
</tr>
<tr>
<td>Mean (nuclear)</td>
<td>45.17</td>
<td>10.21</td>
<td>1.68</td>
<td>42.93</td>
<td>0.04</td>
<td>n/a</td>
<td>0.19**</td>
<td>0.45**</td>
<td>0.57**</td>
</tr>
<tr>
<td>Plastid DNA</td>
<td>44.82</td>
<td>20.47</td>
<td>34.71</td>
<td>n/a</td>
<td>0.65**</td>
<td>0.37**</td>
<td>0.45**</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

The values of the first four columns are percent variation explained by each hierarchical level; ‘among clades’ refers to plastid clades A–C (see Fig. 1). The last five columns are values of fixation index analogues (\(\Phi\)), taking into account sequence similarity, and their significance: *P < 0.05, **P < 0.0001. ‘b/w loc’ = between sampling localities; ‘b/w clades’ = between clades; ‘w/in loc’ = within sampling localities; ‘w/in ind’ = within individuals. \(\Phi\)-statistics: \(\Phi_{IS}\) = among individuals within sampling localities, \(\Phi_{ST}\) = among sampling localities, \(\Phi_{SC}\) = among sampling localities within clades, \(\Phi_{CT}\) = among clades and \(\Phi_{IT}\) = among individuals among populations. © 2011 Blackwell Publishing Ltd
INTEGRATIVE ORCHID SPECIES DELIMITATION

experienced no recent gene flow as potential species (although not requiring other evidence of reproductive isolation).’’ BPP identified four species, corresponding to var. vreelandii, var. striata, Californian accessions and C. bentleyi + C. striata involuta (as a single species). That the latter were considered a single species was not a surprise, given the lack of variation between them for the loci sampled. The four species delimited by BPP correlate exactly with the major ptDNA clades from Fig. 1. The fact that changing the guide tree topology (i.e. relationships between entities within C. striata s.s.) essentially had no effect on the delimitation results of the BPP analyses (see Leaché & Fujita 2010 for a discussion of high posterior probabilities despite misspecified guide trees) suggests the need for more informative loci and definitive knowledge of the species tree in future analyses.

Interpretations under different operational criteria (to the extent of the data and analyses in this study) appear to delimit species differently for the C. striata complex. Specifically, delimitation of the three entities within C. striata s.s. as separate species by BPP but not by the FFR method represents a direct conflict—the opposite is the situation for C. bentleyi and C. striata involuta under each, respectively. This situation is not uncommon and can be accommodated under the theoretical framework of the general population lineage concept, which posits that various operational criteria may delimit species differently because they become relevant at different times in lineage divergence (reviewed in de Queiroz 2007). Presently, we favour the delimitation of three species (C. bentleyi, C. involuta and C. striata s.s.) under diagnosable PSC and FFR operational criteria owing to the ability to utilize both morphological and genetic evidence in a cumulative-integrative manner. The fact that C. bentleyi and C. striata involuta do vary morphologically suggests that there may yet be nuclear DNA loci that differentiate them, but this remains to be explored.

Other considerations for species delimitation in the C. striata complex concern geography, phenology and reproductive mode. Corallorhiza bentleyi is a narrow endemic (eastern USA), disjunct from all other members of the complex; the latter largely occupy more northern and western montane and sub-boreal/subalpine regions (Canada, USA, Mexico; see Freudenstein 1997; Barrett & Freudenstein 2009). Corallorhiza striata involuta, despite a virtually identical genetic relationship (to our knowledge) to C. bentleyi, occurs in montane regions of Mexico. Corallorhiza striata vreelandii has a limited distribution in Mexico but is only narrowly parapatric with C. striata involuta there (and no populations of the two contained individuals from both). Thus, the ancestor of C. striata involuta and C. bentleyi likely had a wider distribution throughout eastern North America, thus presently representing a very recent disjunction (see Barrett & Freudenstein 2009). Very little genetic differentiation would be expected for these two sets of populations.

Corallorhiza striata s.s. typically flowers from April-June, while C. bentleyi and C. striata involuta flower from July-August (Freudenstein 1997), representing temporal, phenological separation (Barrett & Freudenstein 2009). This pattern is corroborated by deep genetic divergence and morphological size differences. Furthermore, C. bentleyi and C. striata involuta appear to be largely dependent on self-pollination, based on our morphological and ecological observations in the field, includingseed set for all flowers in a raceme, even before flowers are fully opened; no recorded observations of pollinators for either; small, drab-coloured, half-open flowers; some populations of C. bentleyi that are completely cleistogamous (i.e. closed-flowered), thus potentially precluding outcrossing. In contrast, ichneumonid wasp pollinators have been observed for all members of C. striata s.s. in the field (Freudenstein 1997; personal observation). Furthermore, predominant selfing in C. bentleyi + C. striata involuta likely purged genetic diversity via rapid genetic drift relative to the predominantly outcrossing C. striata s.s.

Based on extensive geographic sampling of ptDNA, nrDNA and morphology, we draw evidence from multiple data sources that the C. striata complex is composed of three species, including (i) a morphologically and genetically variable, widespread C. striata s.s., (ii) C. bentleyi, endemic to Virginia and West Virginia, USA, and (iii) C. involuta, endemic to the mountains of Mexico. The widespread C. striata s.s. is distinct from both C. bentleyi and C. striata involuta based on ptDNA, nrDNA and morphology. Although virtually identical based on the genetic markers chosen in this study, C. bentleyi and C. involuta display diagnosable labelllum-callus shape differences in addition to being geographically isolated by thousands of kilometres.

Within C. striata s.s., we identified three ESUs (sensu Moritz 1994), which are best recognized at the level of variety, based on (i) significant floral size differences, (ii) ptDNA exclusivity, (iii) nrDNA divergence, (iv) parapatry and (v) little evidence of gene flow. Sharing of nuclear alleles, specifically in the form of heterozygotes (i.e. common allele pools), argues against their recognition at the species level. Bayesian species delimitation (operationally adopting an interpretation of the BSC) identified four species: three within C. striata s.s. and a fourth composed of C. bentleyi + C. striata involuta. However, more informative data will be needed (including definitive knowledge of the species tree) to more confidently apply these methods. Regardless, each of the entities identified in
this study should be treated as units for the purposes of conservation of the orchids themselves and the habitats in which they occur.

Acknowledgements

The authors thank S. Bentley, M. Burzynski, L. Heshka, J. Horky, K. Inoue, J. Mauder and G. Salazar for assistance collecting plant material. For sequencing assistance, we thank J. Díaz, and for feedback, we thank K. Abdul-Salim, B. Carstens, J. Davis, H. Gibbs, A. Leaché, D. Taylor, J. Wenzel, A. Wolfe and three anonymous reviewers. We thank the USDA Forest Service, California State Parks, Virginia Department of Agriculture, ParksCanada and the Canadian Forest Service for permission to collect. Funding was provided by the American Orchid Society, American Society of Plant Taxonomists, OSU Herbarium, OSU Office of International Affairs and National Science Foundation Grant DEB-0415920.

References


Cornell DS (1950) Native orchids of North America north of Mexico, Chronica Botanica, Waltham, Massachusetts, USA.


genetic loci reveal low levels of species diversity in the genus Clathrogalea. BMC Evolutionary Biology, 9, 30.


C.B. is a postdoctoral researcher interested in monocot phylogenetics, phylogeography, taxonomy, molecular evolution, and co-evolution. J.F. is an associate professor of plant systematics interested in morphological and molecular evolution of monocots and various other angiosperm lineages (particularly Orchidaceae and Ericaceae), as well as in phylogenetic methodology and systematic theory.

Data accessibility


Supporting information

Additional supporting information may be found in the online version of this article.

Appendix S1 Locality and sampling information for molecular and morphological data in the C. striata complex.

Appendix S2 Maximum Likelihood gene tree for combined rbcL and rpl32-trnL spacer from RAxML under the GTRGAMMA model.

Appendix S3 Recombination, AMOVA, heterozygosity, molecular diversity, gene flow, ordination, landmark, and Bayesian Species Delimitation information.

Appendix S4 MP phylograms of the C. striata complex based on nuclear data.

Appendix S5 Population structure of Corallorhiza striata s.s.

Appendix S6 Posterior densities of migration estimates from Bayesian analysis in MIGRATE for C. striata s.s.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

© 2011 Blackwell Publishing Ltd