Antifungal Agents and Antifungal Therapy

Current Systemic Antifungals

- Polyenes
 - Macrolide antibiotics containing unsaturated diene bonds
 - Rapidly bind to sterols, preferentially to ergosterol
 - 'the' sterol found in fungal plasma membranes
 - Mechanism of action:
 - Disruption of the osmotic integrity of the cell membrane with subsequent leakage of intracellular ions and materials
 - Oxidative damage of membrane components

Current Systemic Antifungals (cont.)

- Two drugs currently in use:
 - Nystatin
 - First true antifungal agent discovered by Brown and Hazen (1948)
 - Secondary metabolite from the actinomycete *Streptomyces noursei*
 - Highly insoluble and toxic as a systemic drug
 - Used as a topical agent
 - Amphotericin B
 - Largely insoluble; often used as a deoxycholate suspension or in lipid vesicles
 - Tolerated much better than nystatin, but still toxic at high levels
 - Can cause renal failure, suppression of erythropoietin, and anemia
 - Effective against a broad spectrum of fungi; few are innately resistant
 - Resistance can be acquired
Current Systemic Antifungals (cont.)

- Mechanism of resistance (amphotericin B)
 - Reduced membrane ergosterol due to defective biosynthetic genes
 - Alterations in sterol content or structure
 - Masking of ergosterol molecules

Current Systemic Antifungals (cont.)

- Flucytosine (5-fluorocytosine)
 - Only antimetabolite of its type known to be effective against fungal infections
 - Mechanism of action: activated via deamination by fungal cells to produce 5-fluorouracil, a known inhibitor of DNA and protein synthesis (via formation of aberrant RNA)
 - Highly water soluble; used as an oral or intravenous agent
 - Fairly well tolerated but can cause bone marrow depression and gastrointestinal distress

Flucytosine. Source: www.doctorfungus.com

Current Systemic Antifungals (cont.)

- Narrow spectrum agent against
 - Candidiasis
 - Cryptococcosis
 - Aspergillosis (minimally effective)
 - Chromoblastomycosis
- Resistance is common due to mutations in
 - Plasma membrane cytosine permease, or
 - Deaminase
- Often used in combination with amphotericin B

Current Systemic Antifungals (cont.)

- Azoles
 - Mechanism of action: all work by inhibition of the fungal cytochrome 14α-demethylase, an enzyme critical in the biosynthesis of ergosterol
 - Causes same type of damage that occurs with polyene treatment (loss of membrane integrity)
 - May take several generations to show effect
 - Types of azoles
 - Triazoles: fluconazole, voriconazole
 - Imidazoles: ketoconazole,itraconazole, posaconazole

Current Systemic Antifungals (cont.)

- Generally considered to be fungistatic, as opposed fungicidal, agents
- Fluconazole, compared to the other azoles, is highly soluble in water; other agents typically require a carrier agent (e.g., cyclodextrin) for systemic or oral use
- Mechanisms of resistance may include:
 - Alteration in demethylase
 - Overexpression of demethylase
 - Overexpression of efflux systems
 - Changes in membrane ergosterol composition
Current Systemic Antifungals (cont.)

- Echinocandins
 - Cyclic glycopeptides that inhibit fungal 1,3-β-glucan synthesis (cell wall component)
 - Best used intravenously
 - Great potency against:
 • Candidiasis - fungicidal
 • Aspergillosis - fungistatic
 - Cases of cryptococcosis are resistant because Cryptococcus contains 1,6-β-glucans
 - Echinocandins include cilofungin, caspofungin, micafungin, and anidulafungin

Current Systemic Antifungals (cont.)

- Nikkomycins
 - Inhibitors of chitin synthesis
 - Good in vivo activity against coccidioidomycosis and blastomycosis
 - Moderate activity against candidiasis, histoplasmosis, and cryptococcosis
 - Exhibits synergistic activity with fluconazole and echinocandins
 - Griseofulvin
 - Microtubule inhibitor (quit toxic); fungicidal
 - Treats dermatomycosis and candidiasis

Superficial Antifungal Agents

- A number of very effective drugs have been developed to treat fungal infections, but are used as topical agents due to their insolubility or toxicity
- Allylamines
 - Include butenafine, naftifine, and terbinafine
 - Mechanism of action: inhibits squalene epoxidase, an enzyme important in membrane biosynthesis (squalene accumulation is toxic)
 - Used to treat candidiasis and dermatomycosis

Superficial Antifungal Agents (cont.)

- Ciclopirox
 - Broad-spectrum antifungal and antibacterial
 - Acts by altering cell membrane integrity, active transport, and cellular respiration
 - Has anti-inflammatory activity
- Tolnaftate
 - Narrow spectrum: dermatomycosis and Malassezia infections
 - Inhibitor of squalene epoxidase

Superficial Antifungal Agents (cont.)

- Selenium sulfide
 - Component of dandruff shampoos
 - Heavy metal that effectively treats tinea versicolor and seborrhic dermatitis (conditions attributed to Malassezia infections)

Antifungal Therapy

- Types of therapy
 - Prophylactic
 - Prophylaxis: broad use of antifungals in a group of patients that
 - Are at risk of acquiring a fungal infection
 - Have no symptoms
 - Targeted prophylaxis: treatment for selected populations generally considered at very high risk for fungal infections due to a established condition, e.g., bone marrow transplant
Antifungal Therapy (cont.)

- Preemptive antifungal therapy: treatment of patients not only at very high risk for fungal infection, but also have markers indicative of early infection, e.g., colonization by Candida
 - Empiric: use of antifungal agents with findings and/or symptoms of a suspected invasive fungal disease, e.g., neutropenic patients
 - Specific: therapy directed at a specific pathogen clinically proven to be present, e.g., administration of amphotericin B and flucytosine to a patient exhibits encapsulated yeasts in spinal fluid (characteristic of cryptococcosis)