Antifungal Agents and Antifungal Therapy

Current Systemic Antifungals

• Polynenes
 – Macrolide antibiotics containing unsaturated diene bonds
 – Rapidly bind to sterols, preferentially to ergosterol - ‘the’ sterol found in fungal plasma membranes
 – Mechanism of action:
 • Disruption of the osmotic integrity of the cell membrane with subsequent leakage of intracellular ions and materials
 • Oxidative damage of membrane components
 – Two drugs currently in use:
 • Nystatin
 – First true antifungal agent discovered by Brown and Hazen (1948)
 – Secondary metabolite from the actinomycete Streptomyces noursei
 – Highly insoluble and toxic as a systemic drug
 – Used as a topical agent
 • Amphotericin B
 – Largely insoluble; often used as a deoxycholate suspension or in lipid vesicles
 – Tolerated much better than nystatin, but still toxic at high levels
 – Can cause renal failure, suppression of erythropoietin, and anemia
 – Effective against a broad spectrum of fungi; few are innately resistant
 – Resistance can be acquired
 – Mechanism of resistance (amphotericin B)
 • Reduced membrane ergosterol due to defective biosynthetic genes
 • Alterations in sterol content or structure
 • Masking of ergosterol molecules
• Flucytosine (5-fluorocytosine)
 – Only antimetabolite of its type known to be effective against fungal infections
 – Mechanism of action: activated via deamination by fungal cells to produce 5-fluorouracil, a known inhibitor of DNA and protein synthesis (via formation of aberrant RNA)
 – Highly water soluble; used as an oral or intravenous agent
 – Fairly well tolerated but can cause bone marrow depression and gastrointestinal distress
 – Narrow spectrum agent against
 • Candidiasis
 • Cryptococcosis
 • Aspergillosis (minimally effective)
 • Chromoblastomycosis
 – Resistance is common due to mutations in
 • Plasma membrane cytosine permease, or
 • Deaminase
 – Often used in combination with amphotericin B

• Azoles
 – Mechanism of action: all work by inhibition of the fungal cytochrome 14α-demethylase, an enzyme critical in the biosynthesis of ergosterol
 • Causes same type of damage that occurs with polyene treatment (loss of membrane integrity)
 • May take several generations to show affect
 – Types of azoles
 • Triazoles: fluconazole, voriconazole
 • Imidazoles: ketoconazole, itraconazole, posaconazole
 – Generally considered to be fungistatic, as opposed fungicidal, agents
 – Fluconazole, compared to the other azoles, is highly soluble in water; other agents typically require a carrier agent (e.g., cyclodextrin) for systemic or oral use
 – Mechanisms of resistance may include:
 • Alteration in demethylase
 • Overexpression of demethylase
 • Overexpression of efflux systems
 • Changes in membrane ergosterol composition
• Echinocandins
 – Cyclic glycopeptides that inhibit fungal 1,3-β-glucan synthesis (cell wall component)
 – Best used intravenously
 – Great potency against:
 • Candidiasis - fungicidal
 • Aspergillosis - fungistatic
 – Cases of cryptococcosis are resistant because Cryptococcus contains 1,6-β-glucans
 – Echinocandins include cilofungin, caspofungin, micafungin, and anidulafungin
• Nikkomycins
 – Inhibitors of chitin synthesis
 • Good in vivo activity against coccidioidomycosis and blastomycosis
 • Moderate activity against candidiasis, histoplasmosis, and cryptococcosis
 – Exhibits synergistic activity with fluconazole and echinocandins
• Griseofulvin
 – Microtubule inhibitor (quite toxic); fungicidal
 – Treats dermatomycosis and candidiasis

Superficial Antifungal Agents

• A number of very effective drugs have been developed to treat fungal infections, but are used as topical agents due to their insolubility or toxicity
• Allylamines
 – Include butenafine, naftifine, and terbinafine
 – Mechanism of action: inhibits squalene epoxidase, an enzyme important in membrane biosynthesis (squalene accumulation is toxic)
 – Used to treat candidiasis and dermatomycosis
• Ciclopirox
 – Broad-spectrum antifungal and antibacterial
 – Acts by altering cell membrane integrity, active transport, and cellular respiration
 – Has anti-inflammatory activity
• Tolnaftate
 – Narrow spectrum: dermatomycosis and *Malassezia* infections
 – Inhibitor of squalene epoxidase
• Selenium sulfide
 – Component of dandruff shampoos
 – Heavy metal that effectively treats tinea versicolor and seborrheic dermatitis (conditions attributed to *Malassezia* infections)

Antifungal Therapy

• Types of therapy
 – Prophylactic
 • Prophylaxis: broad use of antifungals in a group of patients that
 – Are at risk of acquiring a fungal infection
 – Have no symptoms
 • Targeted prophylaxis: treatment for selected populations generally considered at very high risk for fungal infections due to a established condition, e.g., bone marrow transplant
 • Preemptive antifungal therapy: treatment of patients not only at very high risk for fungal infection, but also have markers indicative of early infection, e.g., colonization by *Candida*
 – Empiric: use of antifungal agents with findings and/or symptoms of a suspected invasive fungal disease, e.g., neutropenic patients
 – Specific: therapy directed at a specific pathogen clinically proven to be present, e.g., administration of amphotericin B and flucytosine to a patient exhibits encapsulated yeasts in spinal fluid (characteristic of cryptococcosis)