Epidemiology of Fungal Diseases

Epidemiology of Mycoses
- Mycosis (pl., mycoses) - an infection caused by a fungus
- Two broad categories of mycoses
 - Nosocomial (hospital acquired)
 - Community acquired
- Nosocomial infections are considered opportunistic in origin
- Community-acquired infections can be opportunistic, but also include endemic mycoses

Epidemiology of Mycoses (cont.)
- Over the past 20 years, both nosocomial and community-acquired mycoses have increased dramatically
- Excluding HIV/AIDS patients, mycoses are the 7th most common cause of infectious disease

Nosocomial Mycoses
- Between 1979 and 2000, the number of sepsis cases due to fungi increased 207%
- Between 1995 and 2002, 9.5% of bloodstream infections were due to fungi, of which the vast majority were Candida species (the fourth leading cause of such infections)

Nosocomial Mycoses (cont.)
- From 1980 to 1990, a separate study noted a marked increase in nosocomial mycotic infections regardless of institution type
 - Teaching hospitals
 - Large (>500 beds): 2.4% to 6.6%
 - Small (<500 beds): 2.1% to 3.5%
 - Non-teaching hospitals
 - Large (>200 beds): 1.2% to 2.5%
 - Small (<200 beds): 0.9% to 2.4%
Nosocomial Mycoses (cont.)

- These increases occurred regardless of:
 - Body site (4 studied)
 - Major specialty service provided
 - Subspecialty service provided
- Deaths due to fungal infections increased nearly three-fold from 1980 (680 deaths) to 1990 (2300 deaths)
- Fungemia patients were more likely to die than those bloodstream infections by other types of microbes

Nosocomial Mycoses (cont.)

- Independent risk factors for fungemia (i.e., those determined to enhance infection alone)
 - Number and duration of antimicrobial agents
 - Chemotherapy
 - Previous colonization
 - Indwelling catheter
 - Neutropenia
 - Hemodialysis

Nosocomial Mycoses (cont.)

- Organ transplant patients experience the highest risk of fungal infection
 - Rates of fungal infection by type of transplant
 - Renal, <5%
 - Bone marrow, 2-30%
 - Heart, 10-35%
 - Liver, 28-42%
 - Risk factors include large corticosteroid doses, tissue rejection, poor tissue function, hyperglycemia, leukopenia, and age

Nosocomial Mycoses (cont.)

- Molecular epidemiology
 - Increased emphasis on characterizing pathogens at the subspecies level to:
 - Better define infectious process
 - Modes of transmission
 - Classically, epidemiology was based upon physiological factors
 - Today, epidemiological studies tend to be DNA-based using a variety of molecular methods

Nosocomial Mycoses (cont.)

- Molecular methods include
 - RFLP (restriction fragment length polymorphisms) analysis
Nosocomial Mycoses (cont.)
- Molecular methods include
 - RFLP (restriction fragment length polymorphisms) analysis
 - Electrophoretic karyotyping
 - Various "satellite" typing methods

Nosocomial Mycoses (cont.)
- Protein-based methods include
 - Immunoblot fingerprinting
 - Polyacrylamide gel electrophoresis
 - Multilocus enzyme electrophoresis

Key question asked by epidemiology - are two or more isolates associated with an outbreak "the same" or "different"?
- If different, probably reflect different sources or modes of infection
- If same, infection is assumed to be cross-contamination from one patient to another, or from a common source
- Typing methods can also help distinguish between a relapse of infection or the acquisition of a new one

Epidemiology data can also be used to help develop strategies of prevention and control which must consider if the origin of infection is
- Endogenous - mainly yeast infections, particular Candida and Candida-like species
- Exogenous - mainly mold species, but also yeasts from contaminated sources

Community-Acquired Mycoses
- Etiological agents of community-acquired fungal infections include
 - Endemic dimorphic fungi
 - Blastomyces dermatitidis
 - Coccidioides immitis and C. posadasii
 - Histoplasma capsulatum var. capsulatum and H. capsulatum var. duboisi
 - Paracoccidioides brasiliensis
 - Penicillium marneffei

Histoplasma capsulatum mold and yeast phases (above) and dimorphism in Coccidioides immitis (below).
Community-Acquired Mycoses (cont.)

- Opportunistic pathogens
 - Candida species and other yeast and yeast-like fungi
 - Non-pigmented (in vivo) molds causing hyalophyphomycosis
 - Pigmented (in vivo) molds causing phaeohyphomycosis
 - Subcutaneous pathogens causing sporotrichosis, chromoblastomycosis, and mycetoma
 - Zygomycetes

Community-Acquired Mycoses (cont.)

- Endemic, dimorphic fungi
 - Acquired in specific geographic regions
 - Afflict both immune competent and immunocompromised individuals, but more common in HIV-infected persons and organ transplant recipients
 - Endemic regions
 - Histoplasma capsulatum
 - var. capsulatum - Ohio River valley of the U.S. and Latin America
 - var. duboisii - portions of Africa

Community-Acquired Mycoses (cont.)

- Coccidioides spp. - desert southwestern U.S., northern Mexico, and Central America
- Paracoccidioides brasiliensis - Central and South America
- Blastomyces dermatitidis - Ohio River and Mississippi valley areas of U.S. and portions of Africa
- Penicillium marneffei - southeast Asia

Laboratory Diagnosis

- Diagnosis of a fungal infection is complicated and requires diverse expertise
- Most common methods are traditional, i.e., isolation, culture, and observation
- "Gold standard" is the recovery of the etiological agent from the clinical specimen
- Current methods include a mixture of the traditional, commercially-available kits, and new molecular approaches.
Laboratory Diagnosis (cont.)

- A proper means to diagnosis includes the following:
 - Specimen selection
 - Proper anatomical site
 - Use of suitable container for transport
 - Specimen collection
 - Choose an active lesion
 - Use aseptic technique
 - Obtain an appropriate quantity
 - Use sterile, appropriately labeled containers

Laboratory Diagnosis (cont.)

- Specimen transport and storage
 - Examine microscopically as soon as possible
 - Transport immediately using pertinent transport media if required
 - Do not freeze specimens
 - Do not refrigerate if not likely to contain contaminating microbes
 - Do not desiccate
 - Plate onto appropriate media

Laboratory Diagnosis (cont.)

- Culture: most infectious agents identified growth from clinical specimens
 - Media - various media have been developed, some quite traditional, and have been very successful in helping identify etiological agents
 - Incubation conditions
 - Optimal temperature: 30°C (range 25-30°C)
 - Need a humid environment
 - Incubation period of 4-6 weeks often used
 - To assess form transitions, dimorphic fungi cultured at 35-37°C

Laboratory Diagnosis (cont.)

- Direct microscopic examination
 - Requires recovery and identification of fungus from cultures or examination of infected tissue
 - Trained individual can often make diagnosis based upon this examination
 - Types of observations
 - Wet mounts (unstained)
 - Stained preparations
 - Fungal cells
 - Tissue samples

Laboratory Diagnosis (cont.)

- Methods of identification and diagnosis
 - Morphology - some fungi exhibit characteristic cellular features both in vitro
 - Histopathology - some fungi exhibit characteristic cellular features both in vitro
 - Nucleic acid probes
 - Serology
 - Radiological surveys