Epidemiology and Laboratory Diagnosis of Fungal Diseases

Epidemiology of Mycoses

- Mycosis (pl., mycoses) - an infection caused by a fungus
- Two broad categories of mycoses
 - Nosocomial (hospital acquired)
 - Community acquired
- Nosocomial infections are considered opportunistic in origin
- Community-acquired infections can be opportunistic, but also include endemic mycoses
- Over the past 20 years, both nosocomial and community-acquired mycoses have increased dramatically
- Excluding HIV/AIDS patients, mycoses are the 7th most common cause of infectious disease
- Contributing factors to increased mycoses:
 - Growing population of immune compromised individuals
 - Mobile population/immigration
 - More older adults with chronic medical conditions
 - Aggressive medical therapies
 - Surgery
 - Antibiotics
 - Chemotherapies/Organ transplants
 - Environmental changes

Nosocomial Mycoses

- From 1980 to 1990, a marked increase was noted in nosocomial mycotic infections regardless of institution type
 - Teaching hospitals
 - Large (>500 beds): 2.4% to 6.6%
 - Small (<500 beds): 2.1% to 3.5%
– Non-teaching hospitals
 • Large (>200 beds): 1.2% to 2.5%
 • Small (<200 beds): 0.9% to 2.4%

• These increases occurred regardless of:
 – Body site (4 studied)
 – Major specialty service provided
 – Subspecialty service provided

• Deaths due to fungal infections increased nearly three-fold from 1980 (680 deaths) to 1990 (2300 deaths)

• Fungemia patients were more likely to die than those bloodstream infections by other types of microbes

• Independent risk factors for fungemia (i.e., those determined to enhance infection alone)
 – Number and duration of antimicrobial agents
 – Chemotherapy
 – Previous colonization
 – Indwelling catheter
 – Neutropenia
 – Hemodialysis

• Organ transplant patients experience the highest risk of fungal infection
 – Rates of fungal infection by type of transplant
 • Renal, <5%
 • Bone marrow, 2-30%
 • Heart, 10-35%
 • Liver, 28-42%
 – Risk factors include large corticosteroid doses, tissue rejection, poor tissue function, hyperglycemia, leukopenia, and age
• Molecular epidemiology
 – Increased emphasis on characterizing pathogens at the subspecies level to:
 • Better define infectious process
 • Modes of transmission
 – Classically, epidemiology was based upon physiological factors
 – Today, epidemiological studies tend to be DNA-based using a variety of molecular methods
 – Molecular methods include
 • RFLP (restriction fragment length polymorphisms) analysis
 • Electrophoretic karyotyping
 • Polymerase chain reaction-based methods of DNA fingerprinting
 – Protein-based methods include
 • Immunoblot fingerprinting
 • Polyacrylamide gel electrophoresis
 • Multilocus enzyme electrophoresis
 – Key question asked by epidemiology - are two or more isolates associated with an outbreak “the same” or “different”?
 • If different, probably reflect different sources or modes of infection
 • If same, infection is assumed to be cross-contamination from one patient to another, or from a common source
 – Typing methods can also help distinguish between a relapse of infection or the acquisition of a new one
 – Epidemiology data can also be used to help develop strategies of prevention and control which must consider if the origin of infection is
 • Endogenous - mainly yeast infections, particular *Candida* and *Candida*-like species
 • Exogenous - mainly mold species, but also yeasts from contaminated sources
Community-Acquired Mycoses

- Etiological agents of community-acquired fungal infections include
 - Endemic dimorphic fungi
 - *Blastomyces dermatitidis*
 - *Coccidioides immitis* and *C. posadasii*
 - *Histoplasma capsulatum* var. *capsulatum* and *H. capsulatum* var. *dubosii*
 - *Paracoccidioides brasiliensis*
 - *Penicillium marneffei*
 - Opportunistic pathogens
 - *Candida* species and other yeast and yeast-like fungi
 - Non-pigmented (in vivo) molds causing hyalophyphomycosis
 - Pigmented (in vivo) molds causing phaeohyphomycosis
 - Subcutaneous pathogens causing sporotrichosis, chromoblastomycosis, and mycetoma
 - Zygometes

- Endemic, dimorphic fungi
 - Acquired in specific geographic regions
 - Afflict both immune competent and immunocompromised individuals, but more common in HIV-infected persons and organ transplant recipients
 - Endemic regions
 - *Histoplasma capsulatum*
 - var. *capsulatum* - Ohio River valley of the U.S. and Latin America
 - var. *dubosii* - portions of Africa
 - *Coccidioides* spp. - desert southwestern U.S., northern Mexico, and Central America
 - *Paracoccidioides brasiliensis*. - Central and South America
 - *Blastomyces dermatitidis* - Ohio River and Mississippi valley areas of U.S. and portions of Africa
 - *Penicillium marneffei* - Southeast Asia

- Opportunistic fungal pathogens
 - Includes virtually any fungus present in the environment
 - Incidence is unknown because these types of infections are not required to be reported
– Among the most notable is Cryptococcus neoformans
 • Rare infection prior to HIV pandemic
 • Two varieties
 – var. neoformans - worldwide distribution
 – var. gattii - tropical and subtropical regions

Laboratory Diagnosis

• Diagnosis of a fungal infection is complicated and requires diverse expertise
• Most common methods are traditional, i.e., isolation, culture, and observation
• “Gold standard” is the recovery of the etiological agent from the clinical specimen
• Current methods include a mixture of the traditional, commercially-available kits, and new molecular approaches
• A proper means to diagnosis includes the following:
 – Specimen selection
 • Proper anatomical site
 • Use of suitable container for transport
 – Specimen collection
 • Choose an active lesion
 • Use aseptic technique
 • Obtain an appropriate quantity
 • Use sterile, appropriately labeled containers
 – Specimen transport and storage
 • Examine microscopically as soon as possible
 • Transport immediately using pertinent transport media if required
 • Do not freeze specimens
 • Do not refrigerate if not likely to contain contaminating microbes
 • Do not desiccate
 • Plate onto appropriate media
 – Culture: most infectious agents identified growth from clinical specimens
 • Media - various media have been developed, some quite traditional, and have been very successful in helping identify etiological agents
• Incubation conditions
 – Optimal temperature: 30°C (range 25-30°C)
 – Need a humid environment
 – Incubation period of 4-6 weeks often used
 – To assess form transitions, dimorphic fungi cultured at 35-37°C

– Direct microscopic examination
 • Requires recovery and identification of fungus from cultures or examination of infected tissue
 • Trained individual can often make diagnosis based upon this examination
 • Types of observations
 – Wet mounts (unstained)
 – Stained preparations
 » Fungal cells
 » Tissue samples

– Methods of identification and diagnosis
 • Morphology - some fungi exhibit characteristic cellular features both in vitro
 • Histopathology - some fungi exhibit characteristic cellular features both in vitro
 • Nucleic acid probes
 • Serology
 • Radiological surveys