Chapter 16 Molds of Man

Human and mammalian pathogens

- Pathogenic fungi are grouped based on:
 - Primary route of entry
 - Type of disease they cause
 - Natural sources of inoculum

Human and mammalian pathogens

- Five categories:
 1) Dermatophytes
 2) Commensals
 3) Saprophytes
 4) Pathogens of traumatized tissue
 5) Pneumocystis

Dermatophytes

- Ringworm fungi
 - Grow on dead, keratinized tissues of skin, hair, & nails
 - Shed tissues are source of inoculum
 - Resulting diseases are superficial
 - Secondary invasion by bacteria
 - Persist in dormant phase
 - Cross-infect other hosts

Dermatophytes

- About 40 species
 - Three genera:
 - Trichophyton
 - Microsporum
 - Epidermophyton
- Grow in dead, keratinized tissues of skin, nails, and hair
- Cannot grow at 37°C
Dermatophytes

- Metabolic products can induce inflammatory response & cause irritation
 - Enable bacteria to invade
 - Shedding of infested skin and hair
- Indirect transmission

Pathogenicity and virulence factors

- Key features that contribute to diseases
 1. Ability to grow on substrates rich in keratin
 2. Host specialization

Keratinases

- Breaks down keratin
 - Allow to grow on keratin as sole carbon and energy source
- Could be virulence determinants

Candida albicans

- Occurs as a diploid budding yeast
- Found on mucosal membranes of more than 50% of healthy individuals
- Can cause local or systemic infections collectively called candidosis

Clinical Manifestations of C. albicans

- If infection occurs in the mouth or throat, it causes speckled white pustules
- Common with newborn children when mother has an infected birth canal
Clinical Manifestations
- Can also be contracted by those wearing dentures or using catheters
- Commonly contracted by those with compromised immune systems
- Infection can also take place when individuals have been on a prolonged course of antibiotics

Virulence Determinants of C. albicans
- Ability to adhere strongly to multiple surfaces
- Ability to undergo a dimorphic switch

Adhesins
- Although many studies have been performed on C. albicans ability to adhere, the precise role of adherence and infection
- Strains collected from those with active infections seem to have a stronger ability to adhere

Adhesins
- Studies have shown that strains of C. albicans grown on sugars such as galactose, maltose, and sucrose show greater ability to adhere to epithelia and denture resin
- C. albicans ability to adhere comes from the use of mannoprotein adhesins in the cell wall

The Dimorphic Switch
- C. albicans normally grows as a budding yeast but in response to nutrient limitation, cells begin to grow hyphae-like outgrowths
- These structures are called pseudohyphae

The Dimorphic Switch
- Difficult to understand how the dimorphic switch is regulated in C. albicans
- Constitutively diploid so it is difficult to obtain mutants
- This particular species has a different codon for serine CUG which is lysine in most other organisms
The Discovery of Mating-Type Genes

- C. albicans was originally thought to reproduce only through asexual budding
- In 1998, one mating type like locus was found
- Since there is only one locus normally mating cannot occur

Opportunistic and Incidental Pathogens

- Theoretically any fungus that grows at 37°C can cause infection
- Actual range of human pathogens are far narrower
- Some fungi infect wounds
- Other fungi are able to infect the lungs because of small spore size

Aspergillosis

- Members of the genus Aspergillus are normally saprotrophs of organic materials
- Produce abundant small conidia that are easily inhaled
- People with impaired respiratory function, colonies called aspergillomas can form in the lungs

Aspergillus fumigatus

- Most dangerous airborne fungal human pathogen
- Can cause infection if spores are inhaled
- Can also enter the body through surgical wounds
- Systemic infection can occur if person is immunocompromised

Systemic infection of C. albicans

- People can develop a systemic infection with certain predisposing factors
- Leukemia, diabetes, corticosteroid therapy
- Systemic infection rarely occurs in AIDS patients
Virulence Factors of A. fumigatus
- No specific virulence factors have been found
- All strains seem to be equally infectious

Endemic Dimorphic Fungi
- Temperature dependent dimorphic switch
- All enter through the lungs
- Limited to a geographically localized area

Endemic dimorphic fungi
- Geographically localized
- Dimorphic: switching forms from temperature shifts
- Infect through airborne spores
- Immunocompromised, individuals prone to lung infections, advanced diabetes and leukemia patients most affected

Coccidioides immitis
- Grows in alkaline soils of desert region
 - California, Arizona, Texas, Central and South America
- Produce hyphae at environmental temperature 25°C
- Hyphae fragment to produce small, thick walled spores which are air transported
 - Arthrospores or Arthroconidia

Coccidioides immitis
- Spherule in host environment 37°C
- C. immitis and C. posadasii are only dimorphic fungi that produce spherules
- Others produce a yeast-like budding phase

Coccidioides immitis
- Spherule to phase in the lungs
- Arthrospores

[Coccidioides immitis diagram](http://www.missionforvisionusa.org/anatomy/2007/02/coccidioidomycosis.html)

Coccidioides immitis
- **Coccidioidomycosis** - Causes infection of the bone, subcutaneous tissue, meninges, and major organs.
- "Biologic agent with the potential to pose severe threat to public health and safety that could potentially be used by terrorists."

Histoplasma capsulatum
- **Wide geographical distribution**
 - Eastern USA, Latin America, Southeast Asia, Africa, Europe.
- "Typical" mold-yeast dimorphism.
- Hyphae produce single conidia on end.
- Macroconidia and microconidia.

Histoplasma capsulatum
- Hyphae involved in saprotrophic phases in dead tissue or in natural substances.
- Saprotrophic in fecal-enriched soil (birds, bats and poultry).

Histoplasma capsulatum
- Airborne spores enter lungs infecting host.
- Spores germinates to form germ-tube then budding yeast phase.
- Yeast phase found in infection.

Histoplasma capsulatum
- **Histoplasmosis**
 - Fever
 - Headache
 - Dry cough
 - Cough
 - Chest pains
 - Ulcers of the mouth and tongue.

Blastomyces dermatitidis
- Found in southeastern and south central USA.
- Associated with moist soil with organic matter or rotting wood.
- In vitro: narrow hyphae with a single globose conidia.
- Transforms into thick-walled yeast-like budding phase.
Blastomyces dermatitidis

- Airborne conidia infect lungs
- 50% of infections are asymptomatic
- Acute pulmonary phase after 30-40 day incubation
- Chronic phase affects lungs, skin, bones, gastrointestinal tract, ulcerative lesions, granulomatous inflammation of lungs

Paracoccidioides brasiliensis

- Subtropical forest regions
 - Central and South America
- Mitosporic fungus with no sexual stage
- Grows as mycelia at lower temperature and as budding yeasts at host temperature

Cryptococcus neoformans

- The only human pathogen out of 30 yeast Cryptococcus species
- Causes a disease called "cryptococcosis"
- Initially a rare disease
 - Naturally Immunosuppressed people
 - Patients undergone surgeries

Blastomyces dermatitidis

 - Thermally regulated dimorphism is single most defining trait
 - Linked to phase-specific gene termed BAD1 (Blastomyces adherence)
 - Found in yeast phase not in hyphal phase that grow in lower temperatures
 - Yeast phase cells consist of 90% α-glucan, mycelial phase cells equal centers α-glucan and β-glucan
 - Reduced content of α-glucan correlates with loss of virulence
Cryptococcus neoformans
- Increase in HIV/AIDS has caused increase in Cryptococcosis cases.
- 7-10% HIV/AIDS are affected by *C. neoformans* worldwide.
- Route of infection is via inhaling spores or yeast cells.

Cryptococcosis symptoms
- Causes an initial subclinical pulmonary infection.
- Chronic lung infection with a primary lesion in the lung.
- Disseminate to the central nervous system
 - Major growth in the cerebral cortex, brain stem, cerebellum, and meninges.

The fungus *C. neoformans*
- A haploid yeast. Diameter 2.5 to 10μm.
- Dehydrated yeast cells are the primary cause of infection.
- Small cells reach the alveoli, rehydrate and cause infection.
- Production of airborne basidiospores (1.8-3.0μm)

The fungus *C. neoformans*
- Basidiospores produced by mating types “a” and “α” cultured on a water-stressed and nitrogen lacking media.
- Two varieties;
 - *C. neoformans var. neoformans*
 - *C. neoformans var. gattii*

Pathogenicity and Virulence determinants of *C. neoformans*
- Pathogenic determinants- Factors that enable invasive organism to live in a host environment
 - Grow at 37°C, 5% CO2, and pH of ~7.3.
 - Gene coding for calcineurin A
 - Protein phosphatase activated by Ca2+ calmodulin.
 - Involved in stress responses in yeasts.
 - Mutants with defective calcineurin A cannot grow in the above mentioned conditions.

Virulence Determinants
- Factors that determine the severity of the disease.
 - Presence of a thick, rigid polysaccharide capsule around yeast cells that are not easily phagocytized or killed.
 - Brown or black pigments containing phenolic compounds, produce melanin to protect against reactive oxidants.
Pneumocystis species
- Worldwide distribution among different host-specific species with no cross-infection
- Primitive fungus-like organism
- Life cycle closest to Protozoa (protist) and placed usually along the early ascomycota
- The only fungus that has cholesterol instead of ergosterol in the cell membrane
- Infects many species of mammals including humans

Pneumocystis
- Causes Pneumocystis carinii pneumonia (PCP) or pneumonitis
- Common cause of death in AIDS/immunocompromized patients
- Strongly age linked infection

Modes of transmission, pathology, & life cycle of Pneumocystis
- Some environmental samples detected as airborne spores and pond water
- Major sources of infection:
 - Activation of pre-existing latent infection
 - Re-infection from inhaled spores
- Lung infection established in the alveoli type 1 epithelial cells
- Direct correlation with a low number of CD4+ lymphocytes

Complicated life cycle
- Asexual trophic forms proliferate in the lungs
- Sexual stage involves conjugation of haploid cells to form a diploid “pre-cyst”
 - The precyst undergoes meiosis and mitosis to form a eight haploid nucleus called the “late phase cyst”
- These cysts can proliferate upto 4 layers of alveolar lumen creating oxygen deficiency
- Advanced stages in major organs like lymph nodes, bone marrow, liver and spleen.

Conclusions
- In humans, children are the primary reservoir of infections.
- Discovery of polymorphism of genes has led to investigations for epidemiology of human infections due to pneumocystis.

Questions
- Which is NOT a feature used to group human-pathogenic fungi?
 - A. Primary route of entry
 - B. Type of disease they cause
 - C. Temperature tolerance
 - D. Natural sources of inoculum
Questions

Which is NOT one of the three genera of dermatophytes?
A. *Trichophyton*
B. *Absidia*
C. *Microsporum*
D. *Epidermophyton*

Questions

Localized saprotrophic colonies in the lungs caused by *A. fumigatus* are called:
A. Carcinomas
B. Aspergillomas
C. Stomatitis
D. Cysts

Questions

True or False, *Candida* often cause systemic infection in AIDS patients.

FALSE
C. albicans rarely causes systemic infection in AIDS patients, other systemic fungal infections tend to develop instead.

Questions

True or False

You can get these fungal infections from an infected person.

FALSE
Once the disease is established in the body it has transformed to the yeast form (or spherule in *C. immitis*), which is not infectious.

Questions

The reduction of which cell wall component in yeast cells correlates with loss of virulence in animal models based on Brandhorst et al?
A. β-glucan
B. Chitin
C. α-glucan
D. Ω-glucan
True or False
The major pathogenic determinants for *C.neoformans* are being able to grow at 37°C, in atmosphere of about 5% CO2 and at a pH of 7.3.

FALSE

The Pneumocystis species have a life cycle that resembles which one of the following most closely?
A. *Coccidioides immitis*
B. Virus
C. *C.neoformans*
D. Protozoa